Chemical Transformation Motifs—Modelling Pathways as Integer Hyperflows
Andersen JL, Flamm C, Merkle D, Stadler PF (2019)
IEEE/ACM Transactions on Computational Biology and Bioinformatics 16(2): 510-523.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Andersen, Jakob L.;
Flamm, Christoph;
Merkle, DanielUniBi ;
Stadler, Peter F.
Abstract / Bemerkung
We present an elaborate framework for formally modelling pathways in chemical reaction networks on a mechanistic level. Networks are modelled mathematically as directed multi-hypergraphs, with vertices corresponding to molecules and hyperedges to reactions. Pathways are modelled as integer hyperflows and we expand the network model by detailed routing constraints. In contrast to the more traditional approaches like Flux Balance Analysis or Elementary Mode analysis we insist on integer-valued flows. While this choice makes it necessary to solve possibly hard integer linear programs, it has the advantage that more detailed mechanistic questions can be formulated. It is thus possible to query networks for general transformation motifs, and to automatically enumerate optimal and near-optimal pathways. Similarities and differences between our work and traditional approaches in metabolic network analysis are discussed in detail. To demonstrate the applicability of the mathematical framework to real-life problems we first explore the design space of possible non-oxidative glycolysis pathways and show that recent manually designed pathways can be further optimized. We then use a model of sugar chemistry to investigate pathways in the autocatalytic formose process. A graph transformation-based approach is used to automatically generate the reaction networks of interest.
Erscheinungsjahr
2019
Zeitschriftentitel
IEEE/ACM Transactions on Computational Biology and Bioinformatics
Band
16
Ausgabe
2
Seite(n)
510-523
ISSN
1545-5963
eISSN
1557-9964, 2374-0043
Page URI
https://pub.uni-bielefeld.de/record/2987399
Zitieren
Andersen JL, Flamm C, Merkle D, Stadler PF. Chemical Transformation Motifs—Modelling Pathways as Integer Hyperflows. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2019;16(2):510-523.
Andersen, J. L., Flamm, C., Merkle, D., & Stadler, P. F. (2019). Chemical Transformation Motifs—Modelling Pathways as Integer Hyperflows. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(2), 510-523. https://doi.org/10.1109/TCBB.2017.2781724
Andersen, Jakob L., Flamm, Christoph, Merkle, Daniel, and Stadler, Peter F. 2019. “Chemical Transformation Motifs—Modelling Pathways as Integer Hyperflows”. IEEE/ACM Transactions on Computational Biology and Bioinformatics 16 (2): 510-523.
Andersen, J. L., Flamm, C., Merkle, D., and Stadler, P. F. (2019). Chemical Transformation Motifs—Modelling Pathways as Integer Hyperflows. IEEE/ACM Transactions on Computational Biology and Bioinformatics 16, 510-523.
Andersen, J.L., et al., 2019. Chemical Transformation Motifs—Modelling Pathways as Integer Hyperflows. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(2), p 510-523.
J.L. Andersen, et al., “Chemical Transformation Motifs—Modelling Pathways as Integer Hyperflows”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 16, 2019, pp. 510-523.
Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Chemical Transformation Motifs—Modelling Pathways as Integer Hyperflows. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 16, 510-523 (2019).
Andersen, Jakob L., Flamm, Christoph, Merkle, Daniel, and Stadler, Peter F. “Chemical Transformation Motifs—Modelling Pathways as Integer Hyperflows”. IEEE/ACM Transactions on Computational Biology and Bioinformatics 16.2 (2019): 510-523.