IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing

Xie G, Wang J, Liu J, Lyu J, Liu Y, Wang C, Zheng F, Jin Y (2024)
IEEE Transactions on Cybernetics: 1-14.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Xie, Guoyang; Wang, Jinbao; Liu, Jiaqi; Lyu, Jiayi; Liu, Yong; Wang, Chengjie; Zheng, Feng; Jin, YaochuUniBi
Abstract / Bemerkung
mage anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing (IM). Recently, many advanced algorithms have been reported, but their performance deviates considerably with various IM settings. We realize that the lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications. In addition, it is difficult for researchers to analyze IAD algorithms without a uniform benchmark. To solve this problem, we propose a uniform IM benchmark, for the first time, to assess how well these algorithms perform, which includes various levels of supervision (unsupervised versus fully supervised), learning paradigms (few-shot, continual and noisy label), and efficiency (memory usage and inference speed). Then, we construct a comprehensive IAD benchmark (IM-IAD), which includes 19 algorithms on seven major datasets with a uniform setting. Extensive experiments (17 017 total) on IM-IAD provide in-depth insights into IAD algorithm redesign or selection. Moreover, the proposed IM-IAD benchmark challenges existing algorithms and suggests future research directions. For reproducibility and accessibility, the source code is uploaded to the website: https://github.com/M-3LAB/open-iad
Stichworte
Benchmark testing; Training; Noise measurement; Image reconstruction; Feature extraction; Inference algorithms; Anomaly detectionAnomaly detection; instance segmentation; unsupervised learning
Erscheinungsjahr
2024
Zeitschriftentitel
IEEE Transactions on Cybernetics
Seite(n)
1-14
ISSN
2168-2267
eISSN
2168-2275
Page URI
https://pub.uni-bielefeld.de/record/2987288

Zitieren

Xie G, Wang J, Liu J, et al. IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing. IEEE Transactions on Cybernetics. 2024:1-14.
Xie, G., Wang, J., Liu, J., Lyu, J., Liu, Y., Wang, C., Zheng, F., et al. (2024). IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing. IEEE Transactions on Cybernetics, 1-14. https://doi.org/10.1109/TCYB.2024.3357213
Xie, Guoyang, Wang, Jinbao, Liu, Jiaqi, Lyu, Jiayi, Liu, Yong, Wang, Chengjie, Zheng, Feng, and Jin, Yaochu. 2024. “IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing”. IEEE Transactions on Cybernetics, 1-14.
Xie, G., Wang, J., Liu, J., Lyu, J., Liu, Y., Wang, C., Zheng, F., and Jin, Y. (2024). IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing. IEEE Transactions on Cybernetics, 1-14.
Xie, G., et al., 2024. IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing. IEEE Transactions on Cybernetics, , p 1-14.
G. Xie, et al., “IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing”, IEEE Transactions on Cybernetics, 2024, pp. 1-14.
Xie, G., Wang, J., Liu, J., Lyu, J., Liu, Y., Wang, C., Zheng, F., Jin, Y.: IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing. IEEE Transactions on Cybernetics. 1-14 (2024).
Xie, Guoyang, Wang, Jinbao, Liu, Jiaqi, Lyu, Jiayi, Liu, Yong, Wang, Chengjie, Zheng, Feng, and Jin, Yaochu. “IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing”. IEEE Transactions on Cybernetics (2024): 1-14.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar