A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields
Li Z, Zou H (2023)
Kyoto Journal of Mathematics 63(4): 893-913.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Li, Zhiyuan;
Zou, HaitaoUniBi
Einrichtung
Abstract / Bemerkung
Over complex numbers, the Fourier–Mukai (FM) partners of abelian varieties are well understood. A celebrated result is Orlov’s derived Torelli theorem. In this note, we study the FM partners of abelian varieties in positive characteristic. We notice that in odd characteristic, two abelian varieties of odd dimension are derived equivalent if their associated Kummer stacks are derived equivalent, which is Krug and Sosna’s result over complex numbers. For abelian surfaces in odd characteristic, we show that two abelian surfaces are derived equivalent if and only if their associated Kummer surfaces are isomorphic. This extends the result of Hosono, Lian, Oguiso, and Yau to odd characteristic fields, solving a classical problem originally from Shioda. Furthermore, we establish the derived Torelli theorem for supersingular abelian varieties and apply it to characterize the quasiliftable birational models of supersingular generalized Kummer varieties.
Erscheinungsjahr
2023
Zeitschriftentitel
Kyoto Journal of Mathematics
Band
63
Ausgabe
4
Seite(n)
893 - 913
ISSN
2156-2261
Page URI
https://pub.uni-bielefeld.de/record/2987088
Zitieren
Li Z, Zou H. A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields. Kyoto Journal of Mathematics. 2023;63(4):893-913.
Li, Z., & Zou, H. (2023). A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields. Kyoto Journal of Mathematics, 63(4), 893-913. https://doi.org/10.1215/21562261-2023-0008
Li, Zhiyuan, and Zou, Haitao. 2023. “A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields”. Kyoto Journal of Mathematics 63 (4): 893-913.
Li, Z., and Zou, H. (2023). A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields. Kyoto Journal of Mathematics 63, 893-913.
Li, Z., & Zou, H., 2023. A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields. Kyoto Journal of Mathematics, 63(4), p 893-913.
Z. Li and H. Zou, “A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields”, Kyoto Journal of Mathematics, vol. 63, 2023, pp. 893-913.
Li, Z., Zou, H.: A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields. Kyoto Journal of Mathematics. 63, 893-913 (2023).
Li, Zhiyuan, and Zou, Haitao. “A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields”. Kyoto Journal of Mathematics 63.4 (2023): 893-913.