Towards understanding the entanglement of human stereotypes and system biases in human–robot interaction
Lachenmaier C, Lumer E, Buschmeier H, Zarrieß S (2024)
In: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. Grollman D, Broadbent E (Eds); New York, NY: ACM: 646–649.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
LachenmaierLumer-2024-HRI.pdf
1.02 MB
Autor*in
Herausgeber*in
Grollman, Dan;
Broadbent, Elizabeth
Einrichtung
Abstract / Bemerkung
The reproduction of stereotypes and social biases are critical issues in Artificial Intelligence research. Current research focuses mainly on identifying and minimizing biases in systems. Less research has been done on the interplay between system biases and stereotypes in humans and their social effects, such as automation bias and stereotype threat. In this paper, we want to bring attention to these topics in the domain of human–robot interaction. In particular, we analyze possible influences on automation bias in a dataset from an empirical human–robot interaction study. We observe automation bias when participants believe a Furhat robot's false judgment of their language skills to be accurate. Despite the limited data, we find that being bilingual significantly influences participants' belief in the robot's negative assessment of their language skills. This result shows that participants' insecurity about their own (language) skills can be reinforced by automation bias and vice versa. We illustrate and discuss the need for awareness of automation bias and the possible reinforcement of this effect due to other social biases.
Stichworte
dililab
Erscheinungsjahr
2024
Titel des Konferenzbandes
Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction
Seite(n)
646–649
Urheberrecht / Lizenzen
Konferenz
19th Annual ACM/IEEE International Conference on Human Robot Interaction
Konferenzort
Boulder, CO, USA
Konferenzdatum
2024-03-11 – 2024-03-15
ISBN
979-8-4007-0323-2
Page URI
https://pub.uni-bielefeld.de/record/2987034
Zitieren
Lachenmaier C, Lumer E, Buschmeier H, Zarrieß S. Towards understanding the entanglement of human stereotypes and system biases in human–robot interaction. In: Grollman D, Broadbent E, eds. Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. New York, NY: ACM; 2024: 646–649.
Lachenmaier, C., Lumer, E., Buschmeier, H., & Zarrieß, S. (2024). Towards understanding the entanglement of human stereotypes and system biases in human–robot interaction. In D. Grollman & E. Broadbent (Eds.), Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (p. 646–649). New York, NY: ACM. https://doi.org/10.1145/3610978.3640736
Lachenmaier, Clara, Lumer, Eleonore, Buschmeier, Hendrik, and Zarrieß, Sina. 2024. “Towards understanding the entanglement of human stereotypes and system biases in human–robot interaction”. In Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, ed. Dan Grollman and Elizabeth Broadbent, 646–649. New York, NY: ACM.
Lachenmaier, C., Lumer, E., Buschmeier, H., and Zarrieß, S. (2024). “Towards understanding the entanglement of human stereotypes and system biases in human–robot interaction” in Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, Grollman, D., and Broadbent, E. eds. (New York, NY: ACM), 646–649.
Lachenmaier, C., et al., 2024. Towards understanding the entanglement of human stereotypes and system biases in human–robot interaction. In D. Grollman & E. Broadbent, eds. Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. New York, NY: ACM, pp. 646–649.
C. Lachenmaier, et al., “Towards understanding the entanglement of human stereotypes and system biases in human–robot interaction”, Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, D. Grollman and E. Broadbent, eds., New York, NY: ACM, 2024, pp.646–649.
Lachenmaier, C., Lumer, E., Buschmeier, H., Zarrieß, S.: Towards understanding the entanglement of human stereotypes and system biases in human–robot interaction. In: Grollman, D. and Broadbent, E. (eds.) Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. p. 646–649. ACM, New York, NY (2024).
Lachenmaier, Clara, Lumer, Eleonore, Buschmeier, Hendrik, and Zarrieß, Sina. “Towards understanding the entanglement of human stereotypes and system biases in human–robot interaction”. Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction. Ed. Dan Grollman and Elizabeth Broadbent. New York, NY: ACM, 2024. 646–649.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
LachenmaierLumer-2024-HRI.pdf
1.02 MB
Access Level
Open Access
Zuletzt Hochgeladen
2024-03-12T14:32:35Z
MD5 Prüfsumme
3be5023ad837bb59fbc94e58864e35f8
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in