Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds

Göz M, Steinecker S, Pohl GM, Walhorn V, Milting H, Anselmetti D (2024)
Scientific Reports 14(1): 2555.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
**Abstract**
The cardiac muscle consists of individual cardiomyocytes that are mechanically linked by desmosomes. Desmosomal adhesion is mediated by densely packed and organized cadherins which, in presence of Ca2+, stretch out their extracellular domains (EC) and dimerize with opposing binding partners by exchanging an N-terminal tryptophan. The strand-swap binding motif of cardiac cadherins like desmocollin 2 (Dsc2) (and desmoglein2 alike) is highly specific but of low affinity with average bond lifetimes in the range of approximately 0.3 s. Notably, despite this comparatively weak interaction, desmosomes mediate a stable, tensile-resistant bond. In addition, force mediated dissociation of strand-swap dimers exhibit a reduced bond lifetime as external forces increase (slip bond). Using atomic force microscopy based single molecule force spectroscopy (AFM-SMFS), we demonstrate that Dsc2 has two further binding modes that, in addition to strand-swap dimers, most likely play a significant role in the integrity of the cardiac muscle. At short interaction times, the Dsc2 monomers associate only loosely, as can be seen from short-lived force-independent bonds. These ideal bonds are a precursor state and probably stabilize the formation of the self-inhibiting strand-swap dimer. The addition of tryptophan in the measurement buffer acts as a competitive inhibitor, preventing the N-terminal strand exchange. Here, Dsc2 dimerizes as X-dimer which clearly shows a tri-phasic slip-catch-slip type of dissociation. Within the force-mediated transition (catch) regime, Dsc2 dimers switch between a rather brittle low force and a strengthened high force adhesion state. As a result, we can assume that desmosomal adhesion is mediated not only by strand-swap dimers (slip) but also by their precursor states (ideal bond) and force-activated X-dimers (catch bond).
Erscheinungsjahr
2024
Zeitschriftentitel
Scientific Reports
Band
14
Ausgabe
1
Art.-Nr.
2555
eISSN
2045-2322
Page URI
https://pub.uni-bielefeld.de/record/2986729

Zitieren

Göz M, Steinecker S, Pohl GM, Walhorn V, Milting H, Anselmetti D. Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds. Scientific Reports. 2024;14(1): 2555.
Göz, M., Steinecker, S., Pohl, G. M., Walhorn, V., Milting, H., & Anselmetti, D. (2024). Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds. Scientific Reports, 14(1), 2555. https://doi.org/10.1038/s41598-024-52725-w
Göz, Manuel, Steinecker, Sylvia, Pohl, Greta M., Walhorn, Volker, Milting, Hendrik, and Anselmetti, Dario. 2024. “Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds”. Scientific Reports 14 (1): 2555.
Göz, M., Steinecker, S., Pohl, G. M., Walhorn, V., Milting, H., and Anselmetti, D. (2024). Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds. Scientific Reports 14:2555.
Göz, M., et al., 2024. Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds. Scientific Reports, 14(1): 2555.
M. Göz, et al., “Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds”, Scientific Reports, vol. 14, 2024, : 2555.
Göz, M., Steinecker, S., Pohl, G.M., Walhorn, V., Milting, H., Anselmetti, D.: Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds. Scientific Reports. 14, : 2555 (2024).
Göz, Manuel, Steinecker, Sylvia, Pohl, Greta M., Walhorn, Volker, Milting, Hendrik, and Anselmetti, Dario. “Cardiac desmosomal adhesion relies on ideal-, slip- and catch bonds”. Scientific Reports 14.1 (2024): 2555.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 38297017
PubMed | Europe PMC

Suchen in

Google Scholar