Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities
Byun S-S, Kumar D, Lee H-S (2024)
Calculus of Variations and Partial Differential Equations 63(2): 27.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Byun, Sun-Sig;
Kumar, Deepak;
Lee, Ho-SikUniBi
Einrichtung
Abstract / Bemerkung
A non-homogeneous mixed local and nonlocal problem in divergence form is investigated for the validity of the global Calderon-Zygmund estimate for the weak solution to the Dirichlet problem of a nonlinear elliptic equation. We establish an optimal Calderon-Zygmund theory by finding not only a minimal regularity requirement on the mixed local and nonlocal operators but also a lower level of geometric assumption on the boundary of the domain for the global gradient estimate. More precisely, assuming that the nonlinearity of the local operator, whose prototype is the classical (-Delta p)1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta _p)<^>1$$\end{document}-Laplace operator with 1
s$$\end{document}-Laplace operator with 0
Stichworte
Primary 35B65;
Secondary 35D30;
35R11;
35R05;
35J60
Erscheinungsjahr
2024
Zeitschriftentitel
Calculus of Variations and Partial Differential Equations
Band
63
Ausgabe
2
Art.-Nr.
27
ISSN
0944-2669
eISSN
1432-0835
Page URI
https://pub.uni-bielefeld.de/record/2986289
Zitieren
Byun S-S, Kumar D, Lee H-S. Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities. Calculus of Variations and Partial Differential Equations . 2024;63(2): 27.
Byun, S. - S., Kumar, D., & Lee, H. - S. (2024). Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities. Calculus of Variations and Partial Differential Equations , 63(2), 27. https://doi.org/10.1007/s00526-023-02631-2
Byun, Sun-Sig, Kumar, Deepak, and Lee, Ho-Sik. 2024. “Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities”. Calculus of Variations and Partial Differential Equations 63 (2): 27.
Byun, S. - S., Kumar, D., and Lee, H. - S. (2024). Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities. Calculus of Variations and Partial Differential Equations 63:27.
Byun, S.-S., Kumar, D., & Lee, H.-S., 2024. Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities. Calculus of Variations and Partial Differential Equations , 63(2): 27.
S.-S. Byun, D. Kumar, and H.-S. Lee, “Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities”, Calculus of Variations and Partial Differential Equations , vol. 63, 2024, : 27.
Byun, S.-S., Kumar, D., Lee, H.-S.: Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities. Calculus of Variations and Partial Differential Equations . 63, : 27 (2024).
Byun, Sun-Sig, Kumar, Deepak, and Lee, Ho-Sik. “Global gradient estimates for the mixed local and nonlocal problems with measurable nonlinearities”. Calculus of Variations and Partial Differential Equations 63.2 (2024): 27.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in