A nonparametric random coefficient approach for life expectancy growth using a hierarchical mixture likelihood model with application to regional data from North Rhine-Westphalia (Germany)
Böhning D, Karasek S, Terschüren C, Annuß R, Fehr R (2013)
BMC Medical Research Methodology 13(1): 36.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
1471-2288-13-36.pdf
1.69 MB
Autor*in
Einrichtung
Abstract / Bemerkung
Background: Life expectancy is of increasing prime interest for a variety of reasons. In many countries, life expectancy is growing linearly, without any indication of reaching a limit. The state of North Rhine–Westphalia (NRW) in Germany with its 54 districts is considered here where the above mentioned growth in life expectancy is occurring as well. However, there is also empirical evidence that life expectancy is not growing linearly at the same level for different regions.
Methods: To explore this situation further a likelihood-based cluster analysis is suggested and performed. The modelling uses a nonparametric mixture approach for the latent random effect. Maximum likelihood estimates are determined by means of the EM algorithm and the number of components in the mixture model are found on the basis of the Bayesian Information Criterion. Regions are classified into the mixture components (clusters) using the maximum posterior allocation rule.
Results: For the data analyzed here, 7 components are found with a spatial concentration of lower life expectancy levels in a centre of NRW, formerly an enormous conglomerate of heavy industry, still the most densely populated area with Gelsenkirchen having the lowest level of life expectancy growth for both genders. The paper offers some explanations for this fact including demographic and socio-economic sources.
Conclusions: This case study shows that life expectancy growth is widely linear, but it might occur on different levels.
Stichworte
Likelihood–based cluster analysis;
Random coefficient modelling;
Finite mixture model;
Life expectancy
Erscheinungsjahr
2013
Zeitschriftentitel
BMC Medical Research Methodology
Band
13
Ausgabe
1
Art.-Nr.
36
Urheberrecht / Lizenzen
eISSN
1471-2288
Page URI
https://pub.uni-bielefeld.de/record/2986174
Zitieren
Böhning D, Karasek S, Terschüren C, Annuß R, Fehr R. A nonparametric random coefficient approach for life expectancy growth using a hierarchical mixture likelihood model with application to regional data from North Rhine-Westphalia (Germany). BMC Medical Research Methodology. 2013;13(1): 36.
Böhning, D., Karasek, S., Terschüren, C., Annuß, R., & Fehr, R. (2013). A nonparametric random coefficient approach for life expectancy growth using a hierarchical mixture likelihood model with application to regional data from North Rhine-Westphalia (Germany). BMC Medical Research Methodology, 13(1), 36. https://doi.org/10.1186/1471-2288-13-36
Böhning, Dankmar, Karasek, Sarah, Terschüren, Claudia, Annuß, Rolf, and Fehr, Rainer. 2013. “A nonparametric random coefficient approach for life expectancy growth using a hierarchical mixture likelihood model with application to regional data from North Rhine-Westphalia (Germany)”. BMC Medical Research Methodology 13 (1): 36.
Böhning, D., Karasek, S., Terschüren, C., Annuß, R., and Fehr, R. (2013). A nonparametric random coefficient approach for life expectancy growth using a hierarchical mixture likelihood model with application to regional data from North Rhine-Westphalia (Germany). BMC Medical Research Methodology 13:36.
Böhning, D., et al., 2013. A nonparametric random coefficient approach for life expectancy growth using a hierarchical mixture likelihood model with application to regional data from North Rhine-Westphalia (Germany). BMC Medical Research Methodology, 13(1): 36.
D. Böhning, et al., “A nonparametric random coefficient approach for life expectancy growth using a hierarchical mixture likelihood model with application to regional data from North Rhine-Westphalia (Germany)”, BMC Medical Research Methodology, vol. 13, 2013, : 36.
Böhning, D., Karasek, S., Terschüren, C., Annuß, R., Fehr, R.: A nonparametric random coefficient approach for life expectancy growth using a hierarchical mixture likelihood model with application to regional data from North Rhine-Westphalia (Germany). BMC Medical Research Methodology. 13, : 36 (2013).
Böhning, Dankmar, Karasek, Sarah, Terschüren, Claudia, Annuß, Rolf, and Fehr, Rainer. “A nonparametric random coefficient approach for life expectancy growth using a hierarchical mixture likelihood model with application to regional data from North Rhine-Westphalia (Germany)”. BMC Medical Research Methodology 13.1 (2013): 36.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 2.0 Generic (CC BY 2.0):
Volltext(e)
Name
1471-2288-13-36.pdf
1.69 MB
Access Level
Open Access
Zuletzt Hochgeladen
2024-01-18T08:28:30Z
MD5 Prüfsumme
2460b69329416256221d1a25f8fb2905