Deep Industrial Image Anomaly Detection: A Survey
Liu J, Xie G, Wang J, Li S, Wang C, Zheng F, Jin Y (2024)
Machine Intelligence Research 21(1): 104-135.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
s11633-023-1459-z.pdf
2.27 MB
Autor*in
Liu, Jiaqi;
Xie, Guoyang;
Wang, Jinbao;
Li, Shangnian;
Wang, Chengjie;
Zheng, Feng;
Jin, YaochuUniBi
Abstract / Bemerkung
The recent rapid development of deep learning has laid a milestone in industrial image anomaly detection (IAD). In this pa-
per, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural net-
work architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the promising setting from indus-
trial manufacturing and review the current IAD approaches under our proposed setting. Moreover, we highlight several opening chal-
lenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are
discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at
https://github.com/M-3LAB/awesome-industrial-anomaly-detection.
Erscheinungsjahr
2024
Zeitschriftentitel
Machine Intelligence Research
Band
21
Ausgabe
1
Seite(n)
104-135
Urheberrecht / Lizenzen
ISSN
2731-538X
eISSN
2731-5398
Page URI
https://pub.uni-bielefeld.de/record/2986078
Zitieren
Liu J, Xie G, Wang J, et al. Deep Industrial Image Anomaly Detection: A Survey. Machine Intelligence Research. 2024;21(1):104-135.
Liu, J., Xie, G., Wang, J., Li, S., Wang, C., Zheng, F., & Jin, Y. (2024). Deep Industrial Image Anomaly Detection: A Survey. Machine Intelligence Research, 21(1), 104-135. https://doi.org/10.1007/s11633-023-1459-z
Liu, Jiaqi, Xie, Guoyang, Wang, Jinbao, Li, Shangnian, Wang, Chengjie, Zheng, Feng, and Jin, Yaochu. 2024. “Deep Industrial Image Anomaly Detection: A Survey”. Machine Intelligence Research 21 (1): 104-135.
Liu, J., Xie, G., Wang, J., Li, S., Wang, C., Zheng, F., and Jin, Y. (2024). Deep Industrial Image Anomaly Detection: A Survey. Machine Intelligence Research 21, 104-135.
Liu, J., et al., 2024. Deep Industrial Image Anomaly Detection: A Survey. Machine Intelligence Research, 21(1), p 104-135.
J. Liu, et al., “Deep Industrial Image Anomaly Detection: A Survey”, Machine Intelligence Research, vol. 21, 2024, pp. 104-135.
Liu, J., Xie, G., Wang, J., Li, S., Wang, C., Zheng, F., Jin, Y.: Deep Industrial Image Anomaly Detection: A Survey. Machine Intelligence Research. 21, 104-135 (2024).
Liu, Jiaqi, Xie, Guoyang, Wang, Jinbao, Li, Shangnian, Wang, Chengjie, Zheng, Feng, and Jin, Yaochu. “Deep Industrial Image Anomaly Detection: A Survey”. Machine Intelligence Research 21.1 (2024): 104-135.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
s11633-023-1459-z.pdf
2.27 MB
Access Level
Open Access
Zuletzt Hochgeladen
2024-01-15T09:46:57Z
MD5 Prüfsumme
9f1fdcc3457d88e5f3a91123fffea6d0
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in