Monochromatic arithmetic progressions in automatic sequences with group structure
Aedo I, Grimm U, Mañibo CN, Nagai Y, Staynova P (2024)
Journal of Combinatorial Theory, Series A 203: 105831.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Aedo, Ibai;
Grimm, Uwe;
Mañibo, Chrizaldy NeilUniBi;
Nagai, Yasushi;
Staynova, Petra
Einrichtung
Abstract / Bemerkung
We determine asymptotic growth rates for lengths of mono-chromatic arithmetic progressions in certain automatic se-quences. In particular, we look at (one-sided) fixed points of aperiodic, primitive, bijective substitutions and spin sub-stitutions, which are generalisations of the Thue-Morse and Rudin-Shapiro substitutions, respectively. For such infinite words, we show that there exists a subsequence {dn} of differ-ences along which the maximum length A(dn) of a monochro-matic arithmetic progression (with fixed difference dn) grows at least polynomially in dn. Explicit upper and lower bounds for the growth exponent can be derived from a finite group associated to the substitution. As an application, we obtain bounds for a van der Waerden-type number for a class of colourings parametrised by the size of the alphabet and the length of the substitution. (c) 2023 Elsevier Inc. All rights reserved.
Stichworte
Bijective automata;
Rudin-Shapiro substitution;
Spin substitutions;
Arithmetic progressions;
Van der Waerden numbers
Erscheinungsjahr
2024
Zeitschriftentitel
Journal of Combinatorial Theory, Series A
Band
203
Art.-Nr.
105831
ISSN
0097-3165
eISSN
1096-0899
Page URI
https://pub.uni-bielefeld.de/record/2985892
Zitieren
Aedo I, Grimm U, Mañibo CN, Nagai Y, Staynova P. Monochromatic arithmetic progressions in automatic sequences with group structure. Journal of Combinatorial Theory, Series A. 2024;203: 105831.
Aedo, I., Grimm, U., Mañibo, C. N., Nagai, Y., & Staynova, P. (2024). Monochromatic arithmetic progressions in automatic sequences with group structure. Journal of Combinatorial Theory, Series A, 203, 105831. https://doi.org/10.1016/j.jcta.2023.105831
Aedo, Ibai, Grimm, Uwe, Mañibo, Chrizaldy Neil, Nagai, Yasushi, and Staynova, Petra. 2024. “Monochromatic arithmetic progressions in automatic sequences with group structure”. Journal of Combinatorial Theory, Series A 203: 105831.
Aedo, I., Grimm, U., Mañibo, C. N., Nagai, Y., and Staynova, P. (2024). Monochromatic arithmetic progressions in automatic sequences with group structure. Journal of Combinatorial Theory, Series A 203:105831.
Aedo, I., et al., 2024. Monochromatic arithmetic progressions in automatic sequences with group structure. Journal of Combinatorial Theory, Series A, 203: 105831.
I. Aedo, et al., “Monochromatic arithmetic progressions in automatic sequences with group structure”, Journal of Combinatorial Theory, Series A, vol. 203, 2024, : 105831.
Aedo, I., Grimm, U., Mañibo, C.N., Nagai, Y., Staynova, P.: Monochromatic arithmetic progressions in automatic sequences with group structure. Journal of Combinatorial Theory, Series A. 203, : 105831 (2024).
Aedo, Ibai, Grimm, Uwe, Mañibo, Chrizaldy Neil, Nagai, Yasushi, and Staynova, Petra. “Monochromatic arithmetic progressions in automatic sequences with group structure”. Journal of Combinatorial Theory, Series A 203 (2024): 105831.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in