Interval groups related to finite Coxeter groups Part II
Baumeister B, Holt DF, Neaime G, Rees S (2023)
Transactions of the London Mathematical Society 10(1): 100-123.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Baumeister, BarbaraUniBi;
Holt, Derek F.;
Neaime, GeorgesUniBi;
Rees, Sarah
Einrichtung
Abstract / Bemerkung
We provide a complete description of the presentations of the interval groups related to quasi-Coxeter elements in finite Coxeter groups. In the simply laced cases, we show that each interval group is the quotient of the Artin group associated with the corresponding Carter diagram by the normal closure of a set of twisted cycle commutators, one for each 4-cycle of the diagram. Our techniques also reprove an analogous result for the Artin groups of finite Coxeter groups, which are interval groups corresponding to Coxeter elements. We also analyse the situation in the non-simply laced cases, where a new Garside structure is discovered. Furthermore, we obtain a complete classification of whether the interval group we consider is isomorphic or not to the related Artin group. Indeed, using methods of Tits, we prove that the interval groups of proper quasi-Coxeter elements are not isomorphic to the Artin groups of the same type, in the case of Dn$D_n$ when n$n$ is even or in any of the exceptional cases. In Baumeister et al. (J. Algebra 629 (2023), 399-423), we show using different methods that this result holds for type Dn$D_n$ for all n > 4$n \geqslant 4$.
Erscheinungsjahr
2023
Zeitschriftentitel
Transactions of the London Mathematical Society
Band
10
Ausgabe
1
Seite(n)
100-123
Urheberrecht / Lizenzen
eISSN
2052-4986
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2985891
Zitieren
Baumeister B, Holt DF, Neaime G, Rees S. Interval groups related to finite Coxeter groups Part II. Transactions of the London Mathematical Society . 2023;10(1):100-123.
Baumeister, B., Holt, D. F., Neaime, G., & Rees, S. (2023). Interval groups related to finite Coxeter groups Part II. Transactions of the London Mathematical Society , 10(1), 100-123. https://doi.org/10.1112/tlm3.12057
Baumeister, Barbara, Holt, Derek F., Neaime, Georges, and Rees, Sarah. 2023. “Interval groups related to finite Coxeter groups Part II”. Transactions of the London Mathematical Society 10 (1): 100-123.
Baumeister, B., Holt, D. F., Neaime, G., and Rees, S. (2023). Interval groups related to finite Coxeter groups Part II. Transactions of the London Mathematical Society 10, 100-123.
Baumeister, B., et al., 2023. Interval groups related to finite Coxeter groups Part II. Transactions of the London Mathematical Society , 10(1), p 100-123.
B. Baumeister, et al., “Interval groups related to finite Coxeter groups Part II”, Transactions of the London Mathematical Society , vol. 10, 2023, pp. 100-123.
Baumeister, B., Holt, D.F., Neaime, G., Rees, S.: Interval groups related to finite Coxeter groups Part II. Transactions of the London Mathematical Society . 10, 100-123 (2023).
Baumeister, Barbara, Holt, Derek F., Neaime, Georges, and Rees, Sarah. “Interval groups related to finite Coxeter groups Part II”. Transactions of the London Mathematical Society 10.1 (2023): 100-123.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2024-04-23T09:36:29Z
MD5 Prüfsumme
bd6a4911a096061f4ad02e41f8e8563c
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in