Robust nonlocal trace spaces and Neumann problems

Grube F, Hensiek T (2024)
Nonlinear Analysis 241: 113481.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We prove trace and extension results for fractional Sobolev spaces of order 𝑠 ∈ (0, 1). These spaces are used in the study of nonlocal Dirichlet and Neumann problems on bounded domains. The results are robust in the sense that the continuity of the trace and extension operators is uniform as 𝑠 approaches 1 and our trace spaces converge to đ»1∕2(𝜕đ›ș). We apply these results in order to study the convergence of solutions of nonlocal Neumann problems as the integro-differential operators localize to a symmetric, second order operator in divergence form.
Erscheinungsjahr
2024
Zeitschriftentitel
Nonlinear Analysis
Band
241
Art.-Nr.
113481
ISSN
0362546X
Page URI
https://pub.uni-bielefeld.de/record/2985768

Zitieren

Grube F, Hensiek T. Robust nonlocal trace spaces and Neumann problems. Nonlinear Analysis. 2024;241: 113481.
Grube, F., & Hensiek, T. (2024). Robust nonlocal trace spaces and Neumann problems. Nonlinear Analysis, 241, 113481. https://doi.org/10.1016/j.na.2023.113481
Grube, Florian, and Hensiek, Thorben. 2024. “Robust nonlocal trace spaces and Neumann problems”. Nonlinear Analysis 241: 113481.
Grube, F., and Hensiek, T. (2024). Robust nonlocal trace spaces and Neumann problems. Nonlinear Analysis 241:113481.
Grube, F., & Hensiek, T., 2024. Robust nonlocal trace spaces and Neumann problems. Nonlinear Analysis, 241: 113481.
F. Grube and T. Hensiek, “Robust nonlocal trace spaces and Neumann problems”, Nonlinear Analysis, vol. 241, 2024, : 113481.
Grube, F., Hensiek, T.: Robust nonlocal trace spaces and Neumann problems. Nonlinear Analysis. 241, : 113481 (2024).
Grube, Florian, and Hensiek, Thorben. “Robust nonlocal trace spaces and Neumann problems”. Nonlinear Analysis 241 (2024): 113481.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

arXiv: 2209.04397

Suchen in

Google Scholar