Robot Control Using Model-Based Reinforcement Learning With Inverse Kinematics

Luipers D, Kaulen N, Chojnowski O, Schneider S, Richert A, Jeschke S (2022)
In: 2022 IEEE International Conference on Development and Learning (ICDL). IEEE: 244-249.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Luipers, Dario; Kaulen, Nicolas; Chojnowski, Oliver; Schneider, SebastianUniBi ; Richert, Anja; Jeschke, Sabina
Abstract / Bemerkung
This work investigates the complications of robotic learning using reinforcement learning (RL). While RL has enormous potential for solving complex tasks its major caveat is the computation cost- and time-intensive training procedure. This work aims to address this issue by introducing a humanlike thinking and acting paradigm to a RL approach. It utilizes model-based deep RL for planning (think) coupled with inverse kinematics (IK) for the execution of actions (act). The approach was developed and tested using a Franka Emika Panda robot model in a simulated environment using the PyBullet physics engine Bullet. It was tested on three different simulated tasks and then compared to the conventional method using RL-only to learn the same tasks. The results show that the RL algorithm with IK converges significantly faster and with higher quality than the applied conventional approach, achieving 98%, 99% and 98% success rates for tasks 1-3 respectively. This work verifies its benefit for use of RL-IK with multi-joint robots.
Erscheinungsjahr
2022
Titel des Konferenzbandes
2022 IEEE International Conference on Development and Learning (ICDL)
Seite(n)
244-249
Konferenz
2022 IEEE International Conference on Development and Learning (ICDL)
Konferenzort
London, United Kingdom
Konferenzdatum
2022-09-12 – 2022-09-15
eISBN
978-1-6654-1311-4
Page URI
https://pub.uni-bielefeld.de/record/2985708

Zitieren

Luipers D, Kaulen N, Chojnowski O, Schneider S, Richert A, Jeschke S. Robot Control Using Model-Based Reinforcement Learning With Inverse Kinematics. In: 2022 IEEE International Conference on Development and Learning (ICDL). IEEE; 2022: 244-249.
Luipers, D., Kaulen, N., Chojnowski, O., Schneider, S., Richert, A., & Jeschke, S. (2022). Robot Control Using Model-Based Reinforcement Learning With Inverse Kinematics. 2022 IEEE International Conference on Development and Learning (ICDL), 244-249. IEEE. https://doi.org/10.1109/ICDL53763.2022.9962215
Luipers, Dario, Kaulen, Nicolas, Chojnowski, Oliver, Schneider, Sebastian, Richert, Anja, and Jeschke, Sabina. 2022. “Robot Control Using Model-Based Reinforcement Learning With Inverse Kinematics”. In 2022 IEEE International Conference on Development and Learning (ICDL), 244-249. IEEE.
Luipers, D., Kaulen, N., Chojnowski, O., Schneider, S., Richert, A., and Jeschke, S. (2022). “Robot Control Using Model-Based Reinforcement Learning With Inverse Kinematics” in 2022 IEEE International Conference on Development and Learning (ICDL) (IEEE), 244-249.
Luipers, D., et al., 2022. Robot Control Using Model-Based Reinforcement Learning With Inverse Kinematics. In 2022 IEEE International Conference on Development and Learning (ICDL). IEEE, pp. 244-249.
D. Luipers, et al., “Robot Control Using Model-Based Reinforcement Learning With Inverse Kinematics”, 2022 IEEE International Conference on Development and Learning (ICDL), IEEE, 2022, pp.244-249.
Luipers, D., Kaulen, N., Chojnowski, O., Schneider, S., Richert, A., Jeschke, S.: Robot Control Using Model-Based Reinforcement Learning With Inverse Kinematics. 2022 IEEE International Conference on Development and Learning (ICDL). p. 244-249. IEEE (2022).
Luipers, Dario, Kaulen, Nicolas, Chojnowski, Oliver, Schneider, Sebastian, Richert, Anja, and Jeschke, Sabina. “Robot Control Using Model-Based Reinforcement Learning With Inverse Kinematics”. 2022 IEEE International Conference on Development and Learning (ICDL). IEEE, 2022. 244-249.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar