Existence of self-similar Dirichlet forms on post-critically finite fractals in terms of their resistances
Liu G (2023)
Manuscripta Mathematica 174(1/2): 597–647.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download

Autor*in
Einrichtung
Abstract / Bemerkung
This paper introduces an equivalent condition for the existence of regular local irreducible conservative Dirichlet forms that are self-similar under a given array of weights on p.c.f. (post-critically finite) fractals, which is expressed by a uniform resistance estimate on an iterated sequence of electrical networks. The corresponding construction of Dirichlet forms through Gamma-convergence, which is inspired by recent works by Yang and Grigor'yan, plays a central role. It avoids solving the complicated renormalization equations for a resistance form which is necessary in Kigami's construction. Techniques for resistance networks are needed for our method to be realized on general p.c.f. fractals. We also point out how the resistance estimate is deduced if a self-similar diffusion exists, and show by examples how this equivalent condition helps to decide which arrays of weights admit self-similar Dirichlet forms.
Stichworte
28A80;
31C25;
31E05;
47D07;
60J46
Erscheinungsjahr
2023
Zeitschriftentitel
Manuscripta Mathematica
Band
174
Ausgabe
1/2
Seite(n)
597–647
Urheberrecht / Lizenzen
ISSN
0025-2611
eISSN
1432-1785
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2985359
Zitieren
Liu G. Existence of self-similar Dirichlet forms on post-critically finite fractals in terms of their resistances. Manuscripta Mathematica . 2023;174(1/2):597–647.
Liu, G. (2023). Existence of self-similar Dirichlet forms on post-critically finite fractals in terms of their resistances. Manuscripta Mathematica , 174(1/2), 597–647. https://doi.org/10.1007/s00229-023-01521-3
Liu, Guanhua. 2023. “Existence of self-similar Dirichlet forms on post-critically finite fractals in terms of their resistances”. Manuscripta Mathematica 174 (1/2): 597–647.
Liu, G. (2023). Existence of self-similar Dirichlet forms on post-critically finite fractals in terms of their resistances. Manuscripta Mathematica 174, 597–647.
Liu, G., 2023. Existence of self-similar Dirichlet forms on post-critically finite fractals in terms of their resistances. Manuscripta Mathematica , 174(1/2), p 597–647.
G. Liu, “Existence of self-similar Dirichlet forms on post-critically finite fractals in terms of their resistances”, Manuscripta Mathematica , vol. 174, 2023, pp. 597–647.
Liu, G.: Existence of self-similar Dirichlet forms on post-critically finite fractals in terms of their resistances. Manuscripta Mathematica . 174, 597–647 (2023).
Liu, Guanhua. “Existence of self-similar Dirichlet forms on post-critically finite fractals in terms of their resistances”. Manuscripta Mathematica 174.1/2 (2023): 597–647.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
s00229-023-01521-3.pdf
973.79 KB
Access Level

Zuletzt Hochgeladen
2024-07-29T08:59:25Z
MD5 Prüfsumme
9c9fc2f63119cc35e7cd8aaf95ac76bd
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in