A Data Stream Ensemble Assisted Multifactorial Evolutionary Algorithm for Offline Data-Driven Dynamic Optimization
Yang C, Ding J, Jin Y, Chai T (2023)
Evolutionary Computation 31(4): 433-458.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Yang, Cuie;
Ding, Jinliang;
Jin, YaochuUniBi ;
Chai, Tianyou
Abstract / Bemerkung
Existing work on offline data-driven optimization mainly focuses on problems in static environments, and little attention has been paid to problems in dynamic environments. Offline data-driven optimization in dynamic environments is a challenging problem because the distribution of collected data varies over time, requiring surrogate models and optimal solutions tracking with time. This paper proposes a knowledge-transfer-based data-driven optimization algorithm to address these issues. First, an ensemble learning method is adopted to train surrogate models to leverage the knowledge of data in historical environments as well as adapt to new environments. Specifically, given data in a new environment, a model is constructed with the new data, and the preserved models of historical environments are further trained with the new data. Then, these models are considered to be base learners and combined as an ensemble surrogate model. After that, all base learners and the ensemble surrogate model are simultaneously optimized in a multitask environment for finding optimal solutions for real fitness functions. In this way, the optimization tasks in the previous environments can be used to accelerate the tracking of the optimum in the current environment. Since the ensemble model is the most accurate surrogate, we assign more individuals to the ensemble surrogate than its base learners. Empirical results on six dynamic optimization benchmark problems demonstrate the effectiveness of the proposed algorithm compared with four state-of-the-art offline data-driven optimization algorithms. Code is available at https://github.com/Peacefulyang/DSE_MFS.git. © 2023 Massachusetts Institute of Technology.
Erscheinungsjahr
2023
Zeitschriftentitel
Evolutionary Computation
Band
31
Ausgabe
4
Seite(n)
433-458
eISSN
1530-9304
Page URI
https://pub.uni-bielefeld.de/record/2985124
Zitieren
Yang C, Ding J, Jin Y, Chai T. A Data Stream Ensemble Assisted Multifactorial Evolutionary Algorithm for Offline Data-Driven Dynamic Optimization. Evolutionary Computation . 2023;31(4):433-458.
Yang, C., Ding, J., Jin, Y., & Chai, T. (2023). A Data Stream Ensemble Assisted Multifactorial Evolutionary Algorithm for Offline Data-Driven Dynamic Optimization. Evolutionary Computation , 31(4), 433-458. https://doi.org/10.1162/evco_a_00332
Yang, Cuie, Ding, Jinliang, Jin, Yaochu, and Chai, Tianyou. 2023. “A Data Stream Ensemble Assisted Multifactorial Evolutionary Algorithm for Offline Data-Driven Dynamic Optimization”. Evolutionary Computation 31 (4): 433-458.
Yang, C., Ding, J., Jin, Y., and Chai, T. (2023). A Data Stream Ensemble Assisted Multifactorial Evolutionary Algorithm for Offline Data-Driven Dynamic Optimization. Evolutionary Computation 31, 433-458.
Yang, C., et al., 2023. A Data Stream Ensemble Assisted Multifactorial Evolutionary Algorithm for Offline Data-Driven Dynamic Optimization. Evolutionary Computation , 31(4), p 433-458.
C. Yang, et al., “A Data Stream Ensemble Assisted Multifactorial Evolutionary Algorithm for Offline Data-Driven Dynamic Optimization”, Evolutionary Computation , vol. 31, 2023, pp. 433-458.
Yang, C., Ding, J., Jin, Y., Chai, T.: A Data Stream Ensemble Assisted Multifactorial Evolutionary Algorithm for Offline Data-Driven Dynamic Optimization. Evolutionary Computation . 31, 433-458 (2023).
Yang, Cuie, Ding, Jinliang, Jin, Yaochu, and Chai, Tianyou. “A Data Stream Ensemble Assisted Multifactorial Evolutionary Algorithm for Offline Data-Driven Dynamic Optimization”. Evolutionary Computation 31.4 (2023): 433-458.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 37155647
PubMed | Europe PMC
Suchen in