GPT-wee: How Small Can a Small Language Model Really Get?

Bunzeck B, Zarrieß S (2023)
In: Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning. Warstadt A, Mueller A, Choshen L, Wilcox E, Zhuang C, Ciro J, Mosquera R, Paranjabe B, Williams A, Linzen T, Cotterell R (Eds); Stroudsburg, PA: Association for Computational Linguistics: 35-46.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
OA 173.45 KB
Herausgeber*in
Warstadt, Alex; Mueller, Aaron; Choshen, Leshem; Wilcox, Ethan; Zhuang, Chengxu; Ciro, Juan; Mosquera, Rafael; Paranjabe, Bhargavi; Williams, Adina; Linzen, Tal; Cotterell, Ryan
Erscheinungsjahr
2023
Titel des Konferenzbandes
Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning
Seite(n)
35-46
Konferenz
BabyLM Challenge at the Conference on Computational Natural Language Learning
Konferenzort
Singapore
Konferenzdatum
2023-12-06 – 2023-12-07
eISBN
978-1-952148-02-6
Page URI
https://pub.uni-bielefeld.de/record/2985109

Zitieren

Bunzeck B, Zarrieß S. GPT-wee: How Small Can a Small Language Model Really Get? In: Warstadt A, Mueller A, Choshen L, et al., eds. Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning. Stroudsburg, PA: Association for Computational Linguistics; 2023: 35-46.
Bunzeck, B., & Zarrieß, S. (2023). GPT-wee: How Small Can a Small Language Model Really Get? In A. Warstadt, A. Mueller, L. Choshen, E. Wilcox, C. Zhuang, J. Ciro, R. Mosquera, et al. (Eds.), Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning (pp. 35-46). Stroudsburg, PA: Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.conll-babylm.2
Bunzeck, Bastian, and Zarrieß, Sina. 2023. “GPT-wee: How Small Can a Small Language Model Really Get?”. In Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning, ed. Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mosquera, et al., 35-46. Stroudsburg, PA: Association for Computational Linguistics.
Bunzeck, B., and Zarrieß, S. (2023). “GPT-wee: How Small Can a Small Language Model Really Get?” in Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning, Warstadt, A., Mueller, A., Choshen, L., Wilcox, E., Zhuang, C., Ciro, J., Mosquera, R., Paranjabe, B., Williams, A., Linzen, T., et al. eds. ( Stroudsburg, PA: Association for Computational Linguistics), 35-46.
Bunzeck, B., & Zarrieß, S., 2023. GPT-wee: How Small Can a Small Language Model Really Get? In A. Warstadt, et al., eds. Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning. Stroudsburg, PA: Association for Computational Linguistics, pp. 35-46.
B. Bunzeck and S. Zarrieß, “GPT-wee: How Small Can a Small Language Model Really Get?”, Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning, A. Warstadt, et al., eds., Stroudsburg, PA: Association for Computational Linguistics, 2023, pp.35-46.
Bunzeck, B., Zarrieß, S.: GPT-wee: How Small Can a Small Language Model Really Get? In: Warstadt, A., Mueller, A., Choshen, L., Wilcox, E., Zhuang, C., Ciro, J., Mosquera, R., Paranjabe, B., Williams, A., Linzen, T., and Cotterell, R. (eds.) Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning. p. 35-46. Association for Computational Linguistics, Stroudsburg, PA (2023).
Bunzeck, Bastian, and Zarrieß, Sina. “GPT-wee: How Small Can a Small Language Model Really Get?”. Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning. Ed. Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mosquera, Bhargavi Paranjabe, Adina Williams, Tal Linzen, and Ryan Cotterell. Stroudsburg, PA: Association for Computational Linguistics, 2023. 35-46.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2024-03-10T12:24:47Z
MD5 Prüfsumme
1d14821eb4f5401bc4249d03e93289e8


Link(s) zu Volltext(en)
Access Level
OA Open Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar