Optimal Retirement Choice under Age-dependent Force of Mortality

Ferrari G, Zhu S (2023) Center for Mathematical Economics Working Papers; 683.
Bielefeld: Center for Mathematical Economics.

Diskussionspapier | Veröffentlicht | Englisch
 
Download
OA 911.56 KB
Abstract / Bemerkung
This paper examines the retirement decision, optimal investment, and consumption strategies under an age-dependent force of mortality. We formulate the optimization problem as a combined stochastic control and optimal stopping problem with a random time horizon, featuring three state variables: wealth, labor income, and force of mortality. To address this problem, we transform it into its dual form, which is a finite time horizon, three-dimensional degenerate optimal stopping problem with interconnected dynamics. We establish the existence of an optimal retirement boundary that splits the state space into continuation and stopping regions. Regularity of the optimal stopping value function is derived and the boundary is proved to be Lipschitz continuous, and it is characterized as the unique solution to a nonlinear integral equation, which we compute numerically. In the original coordinates, the agent thus re- tires whenever her wealth exceeds an age-, labor income- and mortality-dependent transformed version of the optimal stopping boundary. We also provide numerical illustrations of the optimal strategies, including the sensitivities of the optimal retirement boundary concerning the relevant model’s parameters.

MSC Classification: 91B70, 93E20, 60G40
Stichworte
Optimal retirement time; Optimal consumption; Optimal portfolio choice; Duality; Optimal stopping; Free boundary; Stochastic control
Erscheinungsjahr
2023
Serientitel
Center for Mathematical Economics Working Papers
Band
683
Seite(n)
57
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2984621

Zitieren

Ferrari G, Zhu S. Optimal Retirement Choice under Age-dependent Force of Mortality. Center for Mathematical Economics Working Papers. Vol 683. Bielefeld: Center for Mathematical Economics; 2023.
Ferrari, G., & Zhu, S. (2023). Optimal Retirement Choice under Age-dependent Force of Mortality (Center for Mathematical Economics Working Papers, 683). Bielefeld: Center for Mathematical Economics.
Ferrari, Giorgio, and Zhu, Shihao. 2023. Optimal Retirement Choice under Age-dependent Force of Mortality. Vol. 683. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
Ferrari, G., and Zhu, S. (2023). Optimal Retirement Choice under Age-dependent Force of Mortality. Center for Mathematical Economics Working Papers, 683, Bielefeld: Center for Mathematical Economics.
Ferrari, G., & Zhu, S., 2023. Optimal Retirement Choice under Age-dependent Force of Mortality, Center for Mathematical Economics Working Papers, no.683, Bielefeld: Center for Mathematical Economics.
G. Ferrari and S. Zhu, Optimal Retirement Choice under Age-dependent Force of Mortality, Center for Mathematical Economics Working Papers, vol. 683, Bielefeld: Center for Mathematical Economics, 2023.
Ferrari, G., Zhu, S.: Optimal Retirement Choice under Age-dependent Force of Mortality. Center for Mathematical Economics Working Papers, 683. Center for Mathematical Economics, Bielefeld (2023).
Ferrari, Giorgio, and Zhu, Shihao. Optimal Retirement Choice under Age-dependent Force of Mortality. Bielefeld: Center for Mathematical Economics, 2023. Center for Mathematical Economics Working Papers. 683.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2023-11-21T10:44:48Z
MD5 Prüfsumme
3e372e709e06f2174b3b30af31a17252


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar