A comprehensive survey of robust deep learning in computer vision

Liu J, Jin Y (2023)
Journal of Automation and Intelligence.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.45 MB
Autor*in
Liu, Jia; Jin, YaochuUniBi
Abstract / Bemerkung
Deep learning has presented remarkable progress in various tasks. Despite the excellent performance, deep learning models remain not robust, especially to well-designed adversarial examples, limiting deep learning models employed in security-critical applications. Therefore, how to improve the robustness of deep learning has attracted increasing attention from researchers. This paper investigates the progress on the threat of deep learning and the techniques that can enhance the model robustness in computer vision. Unlike previous relevant survey papers summarizing adversarial attacks and defense technologies, this paper also provides an overview of the general robustness of deep learning. Besides, this survey elaborates on the current robustness evaluation approaches, which require further exploration. This paper also reviews the recent literature on making deep learning models resistant to adversarial examples from an architectural perspective, which was rarely mentioned in previous surveys. Finally, interesting directions for future research are listed based on the reviewed literature. This survey is hoped to serve as the basis for future research in this topical field.
Erscheinungsjahr
2023
Zeitschriftentitel
Journal of Automation and Intelligence
ISSN
29498554
Page URI
https://pub.uni-bielefeld.de/record/2984612

Zitieren

Liu J, Jin Y. A comprehensive survey of robust deep learning in computer vision. Journal of Automation and Intelligence. 2023.
Liu, J., & Jin, Y. (2023). A comprehensive survey of robust deep learning in computer vision. Journal of Automation and Intelligence. https://doi.org/10.1016/j.jai.2023.10.002
Liu, Jia, and Jin, Yaochu. 2023. “A comprehensive survey of robust deep learning in computer vision”. Journal of Automation and Intelligence.
Liu, J., and Jin, Y. (2023). A comprehensive survey of robust deep learning in computer vision. Journal of Automation and Intelligence.
Liu, J., & Jin, Y., 2023. A comprehensive survey of robust deep learning in computer vision. Journal of Automation and Intelligence.
J. Liu and Y. Jin, “A comprehensive survey of robust deep learning in computer vision”, Journal of Automation and Intelligence, 2023.
Liu, J., Jin, Y.: A comprehensive survey of robust deep learning in computer vision. Journal of Automation and Intelligence. (2023).
Liu, Jia, and Jin, Yaochu. “A comprehensive survey of robust deep learning in computer vision”. Journal of Automation and Intelligence (2023).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2023-11-21T06:55:00Z
MD5 Prüfsumme
6526cf0ee9eabc99d3c952f060caaba8


Link(s) zu Volltext(en)
URL
https://pdf.sciencedirectassets.com/783241/AIP/1-s2.0-S294985542300045X/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjELb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIC58cmal7t6CiPjykal3dIzb%2FQuE5SroaWU0MZhmKdJNAiEAr9ZiLi42VPYlljSzz9dHRvUIrUMBdOe0HWp%2B8Sp1rp8qvAUI%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARAFGgwwNTkwMDM1NDY4NjUiDMzebGm0nlUPdWQZEiqQBQAmdg4fheghfb2YCCGELN6%2FMNxFXGn5%2BNOmukFiEDiB2MS2LYh78zyHw7BI1yxGMbvBmiBup%2BstVRUgfZSsvxJHxsE25Cc0%2BaSVhbJuDHILCxNnyop1DamR33jR%2BWoyAYgVovjQTsw3k7oByk%2FmRXRLEetQgrK7tLwKPjCY3HGgS4A1ms3IKRqPDotcAB1HBZMr31O3GvlEtlOifs0sRgls%2FvvMPnWPi30hh2TE%2BhsajQW7o%2BkLA%2BMTs0w%2BQLCqnHTVV%2BYHrhGpQtMEuVNMx4uG%2BxjJ5HY8mg0r7exa1iJYKOn1N61qSkhpKlEyvQSTYckTgnQ7P5IgzjdmES6EN%2FEEv3wmXorajXCybyzM1z11cBut6q98Mzjyfzgif0XHlvZi2hw6cijZkXQ2bFL%2Bxl%2FM9DS3jOraR%2FDq5LbKtcVUzVLQq%2BAQ7mXsW1kBgDjVD5QJJwSFvjCIhMVWRDZiFNh5ZbdXZfUB15qJ%2Ftue67OdITGC7Z3WiCfK3PYfzoXGTzd0xGVMKC7laDmKxequCBKSom8HvXJpt8Eeoj3%2FbPyTfGIxJA1755NJzYRAAdq2kC%2FmsCAoPPlplVqzK0k2JWA28Gx1VwYwRQJyc26nxthhdJtUq%2Fs5D2Cq%2BKz0p4lV1VCDU%2FoaZtNBNf%2FGMSkH0xL34FLFBQ5rdPxYRqrsNGnmDQlsfXsYjfnTE03rSaQqgMghnrWVhku0JjwcuvliyLSa1xeYb2bv2LZ00laB5T3qVD9bWH%2FpQsCii2q4ADEXgz3IUMNzlUjRx794lPgYsqQNID2vz5EITVW83sJwp4%2BoeFOjWkDboaQ7oUEkTWZKmCEXWnhY5Iuc4wykhxi2np7%2FObBE4MysI4y5AQoipDIkMJ6O8aoGOrEBK7Zzdj09ptfN4UfgXrWaRZHdpSYvirgMN5QBJmIbh9NXTTJbAtAniFpInHyO44wCh1tRtu%2B9wAxp3Z1z34ptjkuTyLrjnnCsXWS0WRugUUizHVhg6zVS%2BGHz9laOLi409sQihtdTqqFp3wmDzIGTRsMHhsk%2F0nPCc7bU%2BlnqW%2FrjdEXjVGL0qgr9qj%2FDH9NJf8652ti7iVKlflebp%2F5g%2BI%2BMOv0XpfkksVxZcauRyuyn&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20231121T065407Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYTVOFBO6O%2F20231121%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=1954f204f23251fc52dbf742cf955d6c2969f3091eeb5492fc7efa0d151f8f6c&hash=b9734a19884aaf62f0cd91c402a052ebeeb7d5912941496611068c4c862844e8&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S294985542300045X&tid=spdf-1f8e53a6-8398-42a0-b278-2f1daa3762ea&sid=8674e2d0556ce940069911a4875ffb3a7c13gxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=1e065f535956555b0404&rr=829704ffabba4dc7&cc=de
Access Level
OA Open Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar