Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images
Marme F, Krieghoff-Henning E, Gerber B, Schmitt M, Zahm D-M, Bauerschlag D, Forstbauer H, Hildebrandt G, Ataseven B, Brodkorb T, Denkert C, et al. (2023)
European Journal of Cancer 195: 113390.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Marme, Frederik;
Krieghoff-Henning, Eva;
Gerber, Bernd;
Schmitt, Max;
Zahm, Dirk-Michael;
Bauerschlag, Dirk;
Forstbauer, Helmut;
Hildebrandt, Guido;
Ataseven, BeyhanUniBi;
Brodkorb, Tobias;
Denkert, Carsten;
Stachs, Angrit
Alle
Alle
Einrichtung
Abstract / Bemerkung
Background
Sentinel lymph node (SLN) status is a clinically important prognostic biomarker in breast cancer and is used to guide therapy, especially for hormone receptor-positive, HER2-negative cases. However, invasive lymph node staging is increasingly omitted before therapy, and studies such as the randomised Intergroup Sentinel Mamma (INSEMA) trial address the potential for further de-escalation of axillary surgery. Therefore, it would be helpful to accurately predict the pretherapeutic sentinel status using medical images.
Methods
Using a ResNet 50 architecture pretrained on ImageNet and a previously successful strategy, we trained deep learning (DL)-based image analysis algorithms to predict sentinel status on hematoxylin/eosin-stained images of predominantly luminal, primary breast tumours from the INSEMA trial and three additional, independent cohorts (The Cancer Genome Atlas (TCGA) and cohorts from the University hospitals of Mannheim and Regensburg), and compared their performance with that of a logistic regression using clinical data only. Performance on an INSEMA hold-out set was investigated in a blinded manner.
Results
None of the generated image analysis algorithms yielded significantly better than random areas under the receiver operating characteristic curves on the test sets, including the hold-out test set from INSEMA. In contrast, the logistic regression fitted on the Mannheim cohort retained a better than random performance on INSEMA and Regensburg. Including the image analysis model output in the logistic regression did not improve performance further on INSEMA.
Conclusions
Employing DL-based image analysis on histological slides, we could not predict SLN status for unseen cases in the INSEMA trial and other predominantly luminal cohorts.
Erscheinungsjahr
2023
Zeitschriftentitel
European Journal of Cancer
Band
195
Art.-Nr.
113390
eISSN
1879-0852
Page URI
https://pub.uni-bielefeld.de/record/2984317
Zitieren
Marme F, Krieghoff-Henning E, Gerber B, et al. Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images. European Journal of Cancer. 2023;195: 113390.
Marme, F., Krieghoff-Henning, E., Gerber, B., Schmitt, M., Zahm, D. - M., Bauerschlag, D., Forstbauer, H., et al. (2023). Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images. European Journal of Cancer, 195, 113390. https://doi.org/10.1016/j.ejca.2023.113390
Marme, Frederik, Krieghoff-Henning, Eva, Gerber, Bernd, Schmitt, Max, Zahm, Dirk-Michael, Bauerschlag, Dirk, Forstbauer, Helmut, et al. 2023. “Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images”. European Journal of Cancer 195: 113390.
Marme, F., Krieghoff-Henning, E., Gerber, B., Schmitt, M., Zahm, D. - M., Bauerschlag, D., Forstbauer, H., Hildebrandt, G., Ataseven, B., Brodkorb, T., et al. (2023). Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images. European Journal of Cancer 195:113390.
Marme, F., et al., 2023. Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images. European Journal of Cancer, 195: 113390.
F. Marme, et al., “Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images”, European Journal of Cancer, vol. 195, 2023, : 113390.
Marme, F., Krieghoff-Henning, E., Gerber, B., Schmitt, M., Zahm, D.-M., Bauerschlag, D., Forstbauer, H., Hildebrandt, G., Ataseven, B., Brodkorb, T., Denkert, C., Stachs, A., Krug, D., Heil, J., Golatta, M., Kühn, T., Nekljudova, V., Gaiser, T., Schönmehl, R., Brochhausen, C., Loibl, S., Reimer, T., Brinker, T.J.: Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images. European Journal of Cancer. 195, : 113390 (2023).
Marme, Frederik, Krieghoff-Henning, Eva, Gerber, Bernd, Schmitt, Max, Zahm, Dirk-Michael, Bauerschlag, Dirk, Forstbauer, Helmut, Hildebrandt, Guido, Ataseven, Beyhan, Brodkorb, Tobias, Denkert, Carsten, Stachs, Angrit, Krug, David, Heil, Jörg, Golatta, Michael, Kühn, Thorsten, Nekljudova, Valentina, Gaiser, Timo, Schönmehl, Rebecca, Brochhausen, Christoph, Loibl, Sibylle, Reimer, Toralf, and Brinker, Titus J. “Deep learning to predict breast cancer sentinel lymph node status on INSEMA histological images”. European Journal of Cancer 195 (2023): 113390.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 37890350
PubMed | Europe PMC
Suchen in