Boundary value problems on non-Lipschitz uniform domains: stability, compactness and the existence of optimal shapes
Hinz M, Rozanova-Pierrat A, Teplyaev A (2023)
Asymptotic Analysis 134(1-2): 25-61.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hinz, MichaelUniBi;
Rozanova-Pierrat, Anna;
Teplyaev, Alexander
Einrichtung
Abstract / Bemerkung
We study boundary value problems for bounded uniform domains in R-n, n >= 2, with non-Lipschitz, and possibly fractal, boundaries. We prove Poincare inequalities with uniform constants and trace terms for (epsilon,infinity)-domains contained in a fixed bounded Lipschitz domain. We introduce generalized Dirichlet, Neumann, and Robin problems for Poisson-type equations and prove the Mosco convergence of the associated energy functionals along sequences of suitably converging domains. This implies a stability result for weak solutions, the norm convergence of the associated resolvents, and the convergence of the corresponding eigenvalues and eigenfunctions. We provide compactness results for parametrized classes of admissible domains, energy functionals, and weak solutions. Using these results, we can then prove the existence of optimal shapes in these classes in the sense that they minimize the initially given energy functionals. For the Robin boundary problems, this result is new.
Stichworte
Fractal boundaries;
Poincare inequalities;
Robin problems;
Mosco;
convergence;
norm resolvent convergence;
optimal shapes
Erscheinungsjahr
2023
Zeitschriftentitel
Asymptotic Analysis
Band
134
Ausgabe
1-2
Seite(n)
25-61
ISSN
0921-7134
eISSN
1875-8576
Page URI
https://pub.uni-bielefeld.de/record/2984092
Zitieren
Hinz M, Rozanova-Pierrat A, Teplyaev A. Boundary value problems on non-Lipschitz uniform domains: stability, compactness and the existence of optimal shapes. Asymptotic Analysis . 2023;134(1-2):25-61.
Hinz, M., Rozanova-Pierrat, A., & Teplyaev, A. (2023). Boundary value problems on non-Lipschitz uniform domains: stability, compactness and the existence of optimal shapes. Asymptotic Analysis , 134(1-2), 25-61. https://doi.org/10.3233/ASY-231825
Hinz, Michael, Rozanova-Pierrat, Anna, and Teplyaev, Alexander. 2023. “Boundary value problems on non-Lipschitz uniform domains: stability, compactness and the existence of optimal shapes”. Asymptotic Analysis 134 (1-2): 25-61.
Hinz, M., Rozanova-Pierrat, A., and Teplyaev, A. (2023). Boundary value problems on non-Lipschitz uniform domains: stability, compactness and the existence of optimal shapes. Asymptotic Analysis 134, 25-61.
Hinz, M., Rozanova-Pierrat, A., & Teplyaev, A., 2023. Boundary value problems on non-Lipschitz uniform domains: stability, compactness and the existence of optimal shapes. Asymptotic Analysis , 134(1-2), p 25-61.
M. Hinz, A. Rozanova-Pierrat, and A. Teplyaev, “Boundary value problems on non-Lipschitz uniform domains: stability, compactness and the existence of optimal shapes”, Asymptotic Analysis , vol. 134, 2023, pp. 25-61.
Hinz, M., Rozanova-Pierrat, A., Teplyaev, A.: Boundary value problems on non-Lipschitz uniform domains: stability, compactness and the existence of optimal shapes. Asymptotic Analysis . 134, 25-61 (2023).
Hinz, Michael, Rozanova-Pierrat, Anna, and Teplyaev, Alexander. “Boundary value problems on non-Lipschitz uniform domains: stability, compactness and the existence of optimal shapes”. Asymptotic Analysis 134.1-2 (2023): 25-61.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in