Cross-modality Neuroimage Synthesis: A Survey

Xie G, Huang Y, Wang J, Lyu J, Zheng F, Zheng Y, Jin Y (2024)
ACM Computing Surveys 56(3): 1-28.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Xie, Guoyang; Huang, Yawen; Wang, Jinbao; Lyu, Jiayi; Zheng, Feng; Zheng, Yefeng; Jin, YaochuUniBi
Abstract / Bemerkung
Multi-modality imaging improves disease diagnosis and reveals distinct deviations in tissues with anatomical properties. The existence of completely aligned and paired multi-modality neuroimaging data has proved its effectiveness in brain research. However, collecting fully aligned and paired data is expensive or even impractical, since it faces many difficulties, including high cost, long acquisition time, image corruption, and privacy issues. An alternative solution is to explore unsupervised or weakly supervised learning methods to synthesize the absent neuroimaging data. In this article, we provide a comprehensive review of cross-modality synthesis for neuroimages, from the perspectives of weakly supervised and unsupervised settings, loss functions, evaluation metrics, imaging modalities, datasets, and downstream applications based on synthesis. We begin by highlighting several opening challenges for cross-modality neuroimage synthesis. Then, we discuss representative architectures of cross-modality synthesis methods under different supervisions. This is followed by a stepwise in-depth analysis to evaluate how cross-modality neuroimage synthesis improves the performance of its downstream tasks. Finally, we summarize the existing research findings and point out future research directions. All resources are available at https://github.com/M-3LAB/awesome-multimodal-brain-image-systhesis.
Erscheinungsjahr
2024
Zeitschriftentitel
ACM Computing Surveys
Band
56
Ausgabe
3
Seite(n)
1-28
ISSN
0360-0300
eISSN
1557-7341
Page URI
https://pub.uni-bielefeld.de/record/2983805

Zitieren

Xie G, Huang Y, Wang J, et al. Cross-modality Neuroimage Synthesis: A Survey. ACM Computing Surveys. 2024;56(3):1-28.
Xie, G., Huang, Y., Wang, J., Lyu, J., Zheng, F., Zheng, Y., & Jin, Y. (2024). Cross-modality Neuroimage Synthesis: A Survey. ACM Computing Surveys, 56(3), 1-28. https://doi.org/10.1145/3625227
Xie, Guoyang, Huang, Yawen, Wang, Jinbao, Lyu, Jiayi, Zheng, Feng, Zheng, Yefeng, and Jin, Yaochu. 2024. “Cross-modality Neuroimage Synthesis: A Survey”. ACM Computing Surveys 56 (3): 1-28.
Xie, G., Huang, Y., Wang, J., Lyu, J., Zheng, F., Zheng, Y., and Jin, Y. (2024). Cross-modality Neuroimage Synthesis: A Survey. ACM Computing Surveys 56, 1-28.
Xie, G., et al., 2024. Cross-modality Neuroimage Synthesis: A Survey. ACM Computing Surveys, 56(3), p 1-28.
G. Xie, et al., “Cross-modality Neuroimage Synthesis: A Survey”, ACM Computing Surveys, vol. 56, 2024, pp. 1-28.
Xie, G., Huang, Y., Wang, J., Lyu, J., Zheng, F., Zheng, Y., Jin, Y.: Cross-modality Neuroimage Synthesis: A Survey. ACM Computing Surveys. 56, 1-28 (2024).
Xie, Guoyang, Huang, Yawen, Wang, Jinbao, Lyu, Jiayi, Zheng, Feng, Zheng, Yefeng, and Jin, Yaochu. “Cross-modality Neuroimage Synthesis: A Survey”. ACM Computing Surveys 56.3 (2024): 1-28.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar