Beyond the Bias: Unveiling the Quality of Implicit Causality Prompt Continuations in Language Models
Sieker J, Bott O, Solstad T, Zarrieß S (2023)
In: Proceedings of the 16th International Natural Language Generation Conference. Keet CM, Lee H-Y, Zarrieß S, Association for Computational Linguistics (Eds); 206–220.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
2023.inlg-main.15.pdf
1.05 MB
Herausgeber*in
Keet, C. Maria;
Lee, Hung-Yi;
Zarrieß, Sina
herausgebende Körperschaft
Association for Computational Linguistics
Abstract / Bemerkung
Recent studies have used human continuations of Implicit Causality (IC) prompts collected in linguistic experiments to evaluate discourse understanding in large language models (LLMs), focusing on the well-known IC coreference bias in the LLMs’ predictions of the next word following the prompt. In this study, we investigate how continuations of IC prompts can be used to evaluate the text generation capabilities of LLMs in a linguistically controlled setting. We conduct an experiment using two open-source GPT-based models, employing human evaluation to assess different aspects of continuation quality. Our findings show that LLMs struggle in particular with generating coherent continuations in this rather simple setting, indicating a lack of discourse knowledge beyond the well-known IC bias. Our results also suggest that a bias congruent continuation does not necessarily equate to a higher continuation quality. Furthermore, our study draws upon insights from the Uniform Information Density hypothesis, testing different prompt modifications and decoding procedures and showing that sampling-based methods are particularly sensitive to the information density of the prompts.
Erscheinungsjahr
2023
Titel des Konferenzbandes
Proceedings of the 16th International Natural Language Generation Conference
Seite(n)
206–220
Urheberrecht / Lizenzen
Konferenz
The 16th International Natural Language Generation Conference
Konferenzort
Prague, Czechia
Konferenzdatum
2023-09-13 – 2023-09-15
Page URI
https://pub.uni-bielefeld.de/record/2983376
Zitieren
Sieker J, Bott O, Solstad T, Zarrieß S. Beyond the Bias: Unveiling the Quality of Implicit Causality Prompt Continuations in Language Models. In: Keet CM, Lee H-Y, Zarrieß S, Association for Computational Linguistics, eds. Proceedings of the 16th International Natural Language Generation Conference. 2023: 206–220.
Sieker, J., Bott, O., Solstad, T., & Zarrieß, S. (2023). Beyond the Bias: Unveiling the Quality of Implicit Causality Prompt Continuations in Language Models. In C. M. Keet, H. - Y. Lee, S. Zarrieß, & Association for Computational Linguistics (Eds.), Proceedings of the 16th International Natural Language Generation Conference (p. 206–220).
Sieker, Judith, Bott, Oliver, Solstad, Torgrim, and Zarrieß, Sina. 2023. “Beyond the Bias: Unveiling the Quality of Implicit Causality Prompt Continuations in Language Models”. In Proceedings of the 16th International Natural Language Generation Conference, ed. C. Maria Keet, Hung-Yi Lee, Sina Zarrieß, and Association for Computational Linguistics, 206–220.
Sieker, J., Bott, O., Solstad, T., and Zarrieß, S. (2023). “Beyond the Bias: Unveiling the Quality of Implicit Causality Prompt Continuations in Language Models” in Proceedings of the 16th International Natural Language Generation Conference, Keet , C. M., Lee, H. - Y., Zarrieß, S., and Association for Computational Linguistics eds. 206–220.
Sieker, J., et al., 2023. Beyond the Bias: Unveiling the Quality of Implicit Causality Prompt Continuations in Language Models. In C. M. Keet, et al., eds. Proceedings of the 16th International Natural Language Generation Conference. pp. 206–220.
J. Sieker, et al., “Beyond the Bias: Unveiling the Quality of Implicit Causality Prompt Continuations in Language Models”, Proceedings of the 16th International Natural Language Generation Conference, C.M. Keet, et al., eds., 2023, pp.206–220.
Sieker, J., Bott, O., Solstad, T., Zarrieß, S.: Beyond the Bias: Unveiling the Quality of Implicit Causality Prompt Continuations in Language Models. In: Keet , C.M., Lee, H.-Y., Zarrieß, S., and Association for Computational Linguistics (eds.) Proceedings of the 16th International Natural Language Generation Conference. p. 206–220. (2023).
Sieker, Judith, Bott, Oliver, Solstad, Torgrim, and Zarrieß, Sina. “Beyond the Bias: Unveiling the Quality of Implicit Causality Prompt Continuations in Language Models”. Proceedings of the 16th International Natural Language Generation Conference. Ed. C. Maria Keet, Hung-Yi Lee, Sina Zarrieß, and Association for Computational Linguistics. 2023. 206–220.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung-Nicht kommerziell 4.0 International (CC BY-NC 4.0):
Volltext(e)
Name
2023.inlg-main.15.pdf
1.05 MB
Access Level
Open Access
Zuletzt Hochgeladen
2023-10-05T09:38:48Z
MD5 Prüfsumme
0bc99def0c33b92c46967dfbf0594391
Link(s) zu Volltext(en)
Access Level
Open Access