The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order

Chaker J, Ki M, Weidner M (2023)
Nonlinear Analysis : Theory, Methods & Applications 232: 113254.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
In this paper, we study the existence of minimizers of the Sobolev quotient for a class of nonlocal operators with an orthotropic structure having different exponents of integrability and different orders of differentiability. Our method is based on the concentration-compactness principle which we extend to this class of operators. One consequence of our main result is the existence of a nontrivial nonnegative solution to the corresponding critical problem.& COPY; 2023 Elsevier Ltd. All rights reserved.
Stichworte
Concentration-compactness principle; Anisotropy; Orthotropic structure; Nonlo cal operator; Sobolev inequality; Quasilinear equation; p-Laplacian
Erscheinungsjahr
2023
Zeitschriftentitel
Nonlinear Analysis : Theory, Methods & Applications
Band
232
Art.-Nr.
113254
ISSN
0362-546X
eISSN
1873-5215
Page URI
https://pub.uni-bielefeld.de/record/2983158

Zitieren

Chaker J, Ki M, Weidner M. The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order. Nonlinear Analysis : Theory, Methods & Applications . 2023;232: 113254.
Chaker, J., Ki, M., & Weidner, M. (2023). The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order. Nonlinear Analysis : Theory, Methods & Applications , 232, 113254. https://doi.org/10.1016/j.na.2023.113254
Chaker, Jamil, Ki, Minhyun, and Weidner, Marvin. 2023. “The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order”. Nonlinear Analysis : Theory, Methods & Applications 232: 113254.
Chaker, J., Ki, M., and Weidner, M. (2023). The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order. Nonlinear Analysis : Theory, Methods & Applications 232:113254.
Chaker, J., Ki, M., & Weidner, M., 2023. The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order. Nonlinear Analysis : Theory, Methods & Applications , 232: 113254.
J. Chaker, M. Ki, and M. Weidner, “The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order”, Nonlinear Analysis : Theory, Methods & Applications , vol. 232, 2023, : 113254.
Chaker, J., Ki, M., Weidner, M.: The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order. Nonlinear Analysis : Theory, Methods & Applications . 232, : 113254 (2023).
Chaker, Jamil, Ki, Minhyun, and Weidner, Marvin. “The concentration-compactness principle for the nonlocal anisotropic p-Laplacian of mixed order”. Nonlinear Analysis : Theory, Methods & Applications 232 (2023): 113254.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar