How to use Abelian Group Theory for the Study of Diagrams over Locally Well-Ordered Sets
Höppner M (1984)
Quaestiones Mathematicae 7(4): 353-361.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Questiones 1984 Hp.pdf
22.60 MB
Autor*in
Einrichtung
Abstract / Bemerkung
The theory of abelian groups is exploited for the study of diagrams over locally well-ordered sets. This method yields a complete list of indecomposable diagrams as well as some direct decompositions into cyclics and a characterization of Σ-pure-injective diagrams. Moreover, we show the existence of stacked bases and give an analogue of a freeness criterion due to Griffith.
Erscheinungsjahr
1984
Zeitschriftentitel
Quaestiones Mathematicae
Band
7
Ausgabe
4
Seite(n)
353-361
ISSN
1607-3606
eISSN
1727-933X
Page URI
https://pub.uni-bielefeld.de/record/2983009
Zitieren
Höppner M. How to use Abelian Group Theory for the Study of Diagrams over Locally Well-Ordered Sets. Quaestiones Mathematicae. 1984;7(4):353-361.
Höppner, M. (1984). How to use Abelian Group Theory for the Study of Diagrams over Locally Well-Ordered Sets. Quaestiones Mathematicae, 7(4), 353-361. https://doi.org/10.1080/16073606.1984.9631887
Höppner, Michael. 1984. “How to use Abelian Group Theory for the Study of Diagrams over Locally Well-Ordered Sets”. Quaestiones Mathematicae 7 (4): 353-361.
Höppner, M. (1984). How to use Abelian Group Theory for the Study of Diagrams over Locally Well-Ordered Sets. Quaestiones Mathematicae 7, 353-361.
Höppner, M., 1984. How to use Abelian Group Theory for the Study of Diagrams over Locally Well-Ordered Sets. Quaestiones Mathematicae, 7(4), p 353-361.
M. Höppner, “How to use Abelian Group Theory for the Study of Diagrams over Locally Well-Ordered Sets”, Quaestiones Mathematicae, vol. 7, 1984, pp. 353-361.
Höppner, M.: How to use Abelian Group Theory for the Study of Diagrams over Locally Well-Ordered Sets. Quaestiones Mathematicae. 7, 353-361 (1984).
Höppner, Michael. “How to use Abelian Group Theory for the Study of Diagrams over Locally Well-Ordered Sets”. Quaestiones Mathematicae 7.4 (1984): 353-361.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Questiones 1984 Hp.pdf
22.60 MB
Access Level
Open Access
Zuletzt Hochgeladen
2023-10-06T08:30:51Z
MD5 Prüfsumme
f997be08344bf4037a41bc0d074c6d18