Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues
Li N, Ma L, Yu G, Xue B, Zhang M, Jin Y (2024)
ACM Computing Surveys 56(2): 1-34.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Li, Nan;
Ma, Lianbo;
Yu, Guo;
Xue, Bing;
Zhang, Mengjie;
Jin, YaochuUniBi
Abstract / Bemerkung
Over recent years, there has been a rapid development of deep learning (DL) in both industry and academia fields. However, finding the optimal hyperparameters of a DL model often needs high computational cost and human expertise. To mitigate the above issue, evolutionary computation (EC) as a powerful heuristic search approach has shown significant merits in the automated design of DL models, so-called evolutionary deep learning (EDL). This article aims to analyze EDL from the perspective of automated machine learning (AutoML). Specifically, we first illuminate EDL from DL and EC and regard EDL as an optimization problem. According to the DL pipeline, we systematically introduce EDL methods ranging from data preparation, model generation, to model deployment with a new taxonomy (i.e., what and how to evolve/optimize), and focus on the discussions of solution representation and search paradigm in handling the optimization problem by EC. Finally, key applications, open issues, and potentially promising lines of future research are suggested. This survey has reviewed recent developments of EDL and offers insightful guidelines for the development of EDL.
Erscheinungsjahr
2024
Zeitschriftentitel
ACM Computing Surveys
Band
56
Ausgabe
2
Seite(n)
1-34
ISSN
0360-0300
eISSN
1557-7341
Page URI
https://pub.uni-bielefeld.de/record/2982949
Zitieren
Li N, Ma L, Yu G, Xue B, Zhang M, Jin Y. Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues. ACM Computing Surveys. 2024;56(2):1-34.
Li, N., Ma, L., Yu, G., Xue, B., Zhang, M., & Jin, Y. (2024). Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues. ACM Computing Surveys, 56(2), 1-34. https://doi.org/10.1145/3603704
Li, Nan, Ma, Lianbo, Yu, Guo, Xue, Bing, Zhang, Mengjie, and Jin, Yaochu. 2024. “Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues”. ACM Computing Surveys 56 (2): 1-34.
Li, N., Ma, L., Yu, G., Xue, B., Zhang, M., and Jin, Y. (2024). Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues. ACM Computing Surveys 56, 1-34.
Li, N., et al., 2024. Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues. ACM Computing Surveys, 56(2), p 1-34.
N. Li, et al., “Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues”, ACM Computing Surveys, vol. 56, 2024, pp. 1-34.
Li, N., Ma, L., Yu, G., Xue, B., Zhang, M., Jin, Y.: Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues. ACM Computing Surveys. 56, 1-34 (2024).
Li, Nan, Ma, Lianbo, Yu, Guo, Xue, Bing, Zhang, Mengjie, and Jin, Yaochu. “Survey on Evolutionary Deep Learning: Principles, Algorithms, Applications, and Open Issues”. ACM Computing Surveys 56.2 (2024): 1-34.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in