Pareto-Wise Ranking Classifier for Multi-Objective Evolutionary Neural Architecture Search

Ma L, Li N, Yu G, Geng X, Cheng S, Wang X, Huang M, Jin Y (2023)
IEEE Transactions on Evolutionary Computation: 1-1.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ma, Lianbo; Li, Nan; Yu, Guo; Geng, Xiaoyu; Cheng, Shi; Wang, Xingwei; Huang, Min; Jin, YaochuUniBi
Abstract / Bemerkung
In multi-objective evolutionary neural architecture search (NAS), existing predictor-based methods commonly suffer from the rank disorder issue that a candidate high-performance architecture may have a poor ranking compared with the worse architecture in terms of the trained predictor.To alleviate the above issue, we aim to train a Pareto-wise end-to-end ranking classifier to simplify the architecture search process by transforming the complex multi-objective NAS task into a simple classification task. To this end, a classifier-based Pareto evolution approach is proposed, where an online classifier is trained to directly predict the dominance relationship between the candidate and reference architectures. Besides, an adaptive clustering method is designed to select reference architectures for the classifier, and an α-domination assisted approach is developed to address the imbalance issue of positive and negative samples. The proposed approach is compared with a number of state-of-the-art NAS methods on widely-used test datasets, and computation results show that the proposed approach is able to alleviate the rank disorder issue and outperforms other methods. Especially, the proposed method is able to find a set of promising network architectures with different model sizes ranging from 2M to 5M under diverse objectives and constraints.
Erscheinungsjahr
2023
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Seite(n)
1-1
ISSN
1089-778X, 1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2982907

Zitieren

Ma L, Li N, Yu G, et al. Pareto-Wise Ranking Classifier for Multi-Objective Evolutionary Neural Architecture Search. IEEE Transactions on Evolutionary Computation. 2023:1-1.
Ma, L., Li, N., Yu, G., Geng, X., Cheng, S., Wang, X., Huang, M., et al. (2023). Pareto-Wise Ranking Classifier for Multi-Objective Evolutionary Neural Architecture Search. IEEE Transactions on Evolutionary Computation, 1-1. https://doi.org/10.1109/TEVC.2023.3314766
Ma, Lianbo, Li, Nan, Yu, Guo, Geng, Xiaoyu, Cheng, Shi, Wang, Xingwei, Huang, Min, and Jin, Yaochu. 2023. “Pareto-Wise Ranking Classifier for Multi-Objective Evolutionary Neural Architecture Search”. IEEE Transactions on Evolutionary Computation, 1-1.
Ma, L., Li, N., Yu, G., Geng, X., Cheng, S., Wang, X., Huang, M., and Jin, Y. (2023). Pareto-Wise Ranking Classifier for Multi-Objective Evolutionary Neural Architecture Search. IEEE Transactions on Evolutionary Computation, 1-1.
Ma, L., et al., 2023. Pareto-Wise Ranking Classifier for Multi-Objective Evolutionary Neural Architecture Search. IEEE Transactions on Evolutionary Computation, , p 1-1.
L. Ma, et al., “Pareto-Wise Ranking Classifier for Multi-Objective Evolutionary Neural Architecture Search”, IEEE Transactions on Evolutionary Computation, 2023, pp. 1-1.
Ma, L., Li, N., Yu, G., Geng, X., Cheng, S., Wang, X., Huang, M., Jin, Y.: Pareto-Wise Ranking Classifier for Multi-Objective Evolutionary Neural Architecture Search. IEEE Transactions on Evolutionary Computation. 1-1 (2023).
Ma, Lianbo, Li, Nan, Yu, Guo, Geng, Xiaoyu, Cheng, Shi, Wang, Xingwei, Huang, Min, and Jin, Yaochu. “Pareto-Wise Ranking Classifier for Multi-Objective Evolutionary Neural Architecture Search”. IEEE Transactions on Evolutionary Computation (2023): 1-1.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar