Removable sets and Lp-uniqueness on manifolds and metric measure spaces

Hinz M, Masamune J, Suzuki K (2023)
Nonlinear Analysis 234: 113296.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hinz, MichaelUniBi; Masamune, J.; Suzuki, K.
Abstract / Bemerkung
We study symmetric diffusion operators on metric measure spaces. Our main question is whether essential self-adjointness or Lp-uniqueness are preserved under the removal of a small closed set from the space. We provide characterizations of the critical size of removed sets in terms of capacities and Hausdorff dimension without any further assumption on removed sets. As a key tool we prove a non -linear truncation result for potentials of nonnegative functions. Our results are robust enough to be applied to Laplace operators on general Riemannian mani-folds as well as sub-Riemannian manifolds and metric measure spaces satisfying curvature-dimension conditions. For non-collapsing Ricci limit spaces with two-sided Ricci curvature bounds we observe that the self-adjoint Laplacian is already fully determined by the classical Laplacian on the regular part.& COPY; 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Stichworte
Essential self-adjointness; Lp-uniqueness; Capacities; Truncations of; potentials; Hausdorff measures
Erscheinungsjahr
2023
Zeitschriftentitel
Nonlinear Analysis
Band
234
Art.-Nr.
113296
ISSN
0362-546X
eISSN
1873-5215
Page URI
https://pub.uni-bielefeld.de/record/2982787

Zitieren

Hinz M, Masamune J, Suzuki K. Removable sets and Lp-uniqueness on manifolds and metric measure spaces. Nonlinear Analysis. 2023;234: 113296.
Hinz, M., Masamune, J., & Suzuki, K. (2023). Removable sets and Lp-uniqueness on manifolds and metric measure spaces. Nonlinear Analysis, 234, 113296. https://doi.org/10.1016/j.na.2023.113296
Hinz, Michael, Masamune, J., and Suzuki, K. 2023. “Removable sets and Lp-uniqueness on manifolds and metric measure spaces”. Nonlinear Analysis 234: 113296.
Hinz, M., Masamune, J., and Suzuki, K. (2023). Removable sets and Lp-uniqueness on manifolds and metric measure spaces. Nonlinear Analysis 234:113296.
Hinz, M., Masamune, J., & Suzuki, K., 2023. Removable sets and Lp-uniqueness on manifolds and metric measure spaces. Nonlinear Analysis, 234: 113296.
M. Hinz, J. Masamune, and K. Suzuki, “Removable sets and Lp-uniqueness on manifolds and metric measure spaces”, Nonlinear Analysis, vol. 234, 2023, : 113296.
Hinz, M., Masamune, J., Suzuki, K.: Removable sets and Lp-uniqueness on manifolds and metric measure spaces. Nonlinear Analysis. 234, : 113296 (2023).
Hinz, Michael, Masamune, J., and Suzuki, K. “Removable sets and Lp-uniqueness on manifolds and metric measure spaces”. Nonlinear Analysis 234 (2023): 113296.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar