Flexible Modelling of Diel and Other Periodic Variation in Hidden Markov Models
Feldmann C, Mews S, Coculla A, Stanewsky R, Langrock R (2023)
Journal of Statistical Theory and Practice 17(3): 45.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Einrichtung
Abstract / Bemerkung
Animal behaviour is often characterised by periodic patterns such as seasonality or diel variation. Such periodic variation can be comprehensively studied from the increasingly detailed ecological time series that are nowadays collected, e.g. using GPS tracking. Within the class of hidden Markov models (HMMs), which is a popular tool for modelling time series driven by underlying behavioural modes, periodic variation is commonly modelled by including trigonometric functions in the linear predictors for the state transition probabilities. This parametric modelling can be too inflexible to capture complex periodic patterns, e.g. featuring multiple activity peaks per day. Here, we explore an alternative approach using penalised splines to model periodic variation in the state-switching dynamics of HMMs. The challenge of estimating the corresponding complex models is substantially reduced by the expectation-maximisation algorithm, which allows us to make use of the existing machinery (and software) for nonparametric regression. The practicality and potential usefulness of our approach is demonstrated in two real-data applications, modelling the movements of African elephants and of common fruit flies.
Stichworte
Animal movement;
Cyclic splines;
EM algorithm;
Time-of-day variation;
Time series
Erscheinungsjahr
2023
Zeitschriftentitel
Journal of Statistical Theory and Practice
Band
17
Ausgabe
3
Art.-Nr.
45
Urheberrecht / Lizenzen
ISSN
1559-8608
eISSN
1559-8616
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2982778
Zitieren
Feldmann C, Mews S, Coculla A, Stanewsky R, Langrock R. Flexible Modelling of Diel and Other Periodic Variation in Hidden Markov Models. Journal of Statistical Theory and Practice . 2023;17(3): 45.
Feldmann, C., Mews, S., Coculla, A., Stanewsky, R., & Langrock, R. (2023). Flexible Modelling of Diel and Other Periodic Variation in Hidden Markov Models. Journal of Statistical Theory and Practice , 17(3), 45. https://doi.org/10.1007/s42519-023-00342-7
Feldmann, Carlina, Mews, Sina, Coculla, Angelica, Stanewsky, Ralf, and Langrock, Roland. 2023. “Flexible Modelling of Diel and Other Periodic Variation in Hidden Markov Models”. Journal of Statistical Theory and Practice 17 (3): 45.
Feldmann, C., Mews, S., Coculla, A., Stanewsky, R., and Langrock, R. (2023). Flexible Modelling of Diel and Other Periodic Variation in Hidden Markov Models. Journal of Statistical Theory and Practice 17:45.
Feldmann, C., et al., 2023. Flexible Modelling of Diel and Other Periodic Variation in Hidden Markov Models. Journal of Statistical Theory and Practice , 17(3): 45.
C. Feldmann, et al., “Flexible Modelling of Diel and Other Periodic Variation in Hidden Markov Models”, Journal of Statistical Theory and Practice , vol. 17, 2023, : 45.
Feldmann, C., Mews, S., Coculla, A., Stanewsky, R., Langrock, R.: Flexible Modelling of Diel and Other Periodic Variation in Hidden Markov Models. Journal of Statistical Theory and Practice . 17, : 45 (2023).
Feldmann, Carlina, Mews, Sina, Coculla, Angelica, Stanewsky, Ralf, and Langrock, Roland. “Flexible Modelling of Diel and Other Periodic Variation in Hidden Markov Models”. Journal of Statistical Theory and Practice 17.3 (2023): 45.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2024-07-08T10:19:33Z
MD5 Prüfsumme
257e72925eb3e5093ce8052a434e22a1
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in