Realtime gray-box algorithm configuration using cost-sensitive classification
Weiß D, Tierney K (2023)
Annals of Mathematics and Artificial Intelligence .
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
A solver's runtime and the quality of the solutions it generates are strongly influenced by its parameter settings. Finding good parameter configurations is a formidable challenge, even for fixed problem instance distributions. However, when the instance distribution can change over time, a once effective configuration may no longer provide adequate performance. Realtime algorithm configuration (RAC) offers assistance in finding high-quality configurations for such distributions by automatically adjusting the configurations it recommends based on instances seen so far. Existing RAC methods treat the solver as a black box, meaning the solver is given a configuration as input, and it outputs either a solution or runtime as an objective function for the configurator. However, analyzing intermediate output from the solver can enable configurators to avoid wasting time on poorly performing configurations. We propose a gray-box approach that utilizes intermediate output during evaluation and implement it within the RAC method Contextual Preselection with Plackett-Luce (CPPL blue). We apply cost-sensitive machine learning with pairwise comparisons to determine whether ongoing evaluations can be terminated to free resources. We compare our approach to a black-box equivalent on several experimental settings and show that our approach reduces the total solving time in several scenarios and improves solution quality in an additional scenario.
Stichworte
Algorithm configuration;
Cost-sensitive learning;
SAT;
MILP;
CVRP;
9005;
9008
Erscheinungsjahr
2023
Zeitschriftentitel
Annals of Mathematics and Artificial Intelligence
ISSN
1012-2443
eISSN
1573-7470
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2982777
Zitieren
Weiß D, Tierney K. Realtime gray-box algorithm configuration using cost-sensitive classification. Annals of Mathematics and Artificial Intelligence . 2023.
Weiß, D., & Tierney, K. (2023). Realtime gray-box algorithm configuration using cost-sensitive classification. Annals of Mathematics and Artificial Intelligence . https://doi.org/10.1007/s10472-023-09890-x
Weiß, Dimitri, and Tierney, Kevin. 2023. “Realtime gray-box algorithm configuration using cost-sensitive classification”. Annals of Mathematics and Artificial Intelligence .
Weiß, D., and Tierney, K. (2023). Realtime gray-box algorithm configuration using cost-sensitive classification. Annals of Mathematics and Artificial Intelligence .
Weiß, D., & Tierney, K., 2023. Realtime gray-box algorithm configuration using cost-sensitive classification. Annals of Mathematics and Artificial Intelligence .
D. Weiß and K. Tierney, “Realtime gray-box algorithm configuration using cost-sensitive classification”, Annals of Mathematics and Artificial Intelligence , 2023.
Weiß, D., Tierney, K.: Realtime gray-box algorithm configuration using cost-sensitive classification. Annals of Mathematics and Artificial Intelligence . (2023).
Weiß, Dimitri, and Tierney, Kevin. “Realtime gray-box algorithm configuration using cost-sensitive classification”. Annals of Mathematics and Artificial Intelligence (2023).
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in