Projective dimension of weakly chordal graphic arrangements

Abe T, Kühne L, Mücksch P, Mühlherr L (2025)
Algebraic Combinatorics 8(1).

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abe, Takuro; Kühne, LukasUniBi ; Mücksch, Paul; Mühlherr, LeonieUniBi
Abstract / Bemerkung
A graphic arrangement is a subarrangement of the braid arrangement whose set of hyperplanes is determined by an undirected graph. A classical result due to Stanley, Edelman and Reiner states that a graphic arrangement is free if and only if the corresponding graph is chordal, i.e., the graph has no chordless cycle with four or more vertices. In this article we extend this result by proving that the module of logarithmic derivations of a graphic arrangement has projective dimension at most one if and only if the corresponding graph is weakly chordal, i.e., the graph and its complement have no chordless cycle with five or more vertices.
Stichworte
arrangement of hyperplanes; graphic arrangement; module of logarithmic; derivations; weakly chordal graphs
Erscheinungsjahr
2025
Zeitschriftentitel
Algebraic Combinatorics
Band
8
Ausgabe
1
eISSN
2589-5486
Page URI
https://pub.uni-bielefeld.de/record/2982635

Zitieren

Abe T, Kühne L, Mücksch P, Mühlherr L. Projective dimension of weakly chordal graphic arrangements. Algebraic Combinatorics . 2025;8(1).
Abe, T., Kühne, L., Mücksch, P., & Mühlherr, L. (2025). Projective dimension of weakly chordal graphic arrangements. Algebraic Combinatorics , 8(1). https://doi.org/10.5802/alco.403
Abe, Takuro, Kühne, Lukas, Mücksch, Paul, and Mühlherr, Leonie. 2025. “Projective dimension of weakly chordal graphic arrangements”. Algebraic Combinatorics 8 (1).
Abe, T., Kühne, L., Mücksch, P., and Mühlherr, L. (2025). Projective dimension of weakly chordal graphic arrangements. Algebraic Combinatorics 8.
Abe, T., et al., 2025. Projective dimension of weakly chordal graphic arrangements. Algebraic Combinatorics , 8(1).
T. Abe, et al., “Projective dimension of weakly chordal graphic arrangements”, Algebraic Combinatorics , vol. 8, 2025.
Abe, T., Kühne, L., Mücksch, P., Mühlherr, L.: Projective dimension of weakly chordal graphic arrangements. Algebraic Combinatorics . 8, (2025).
Abe, Takuro, Kühne, Lukas, Mücksch, Paul, and Mühlherr, Leonie. “Projective dimension of weakly chordal graphic arrangements”. Algebraic Combinatorics 8.1 (2025).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

arXiv: 2307.06021

Preprint: 10.48550/ARXIV.2307.06021

Suchen in

Google Scholar