Strong uniqueness for Dirichlet operators related to stochastic quantization under exponential/trigonometric interactions on the two-dimensional torus
Albeverio S, Kawabi H, Ihalache S-R, Röckner M (2023)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24(1): 33-69.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Albeverio, Sergio;
Kawabi, Hiroshi;
Ihalache, Stefan-Radu;
Röckner, MichaelUniBi
Einrichtung
Abstract / Bemerkung
We consider space-time quantum fields with exponential/trigonometric interactions. In the context of Euclidean quantum field theory, the former and the latter are called the H circle divide egh-Krohn model and the Sine-Gordon model, respectively. The main objective of the present paper is to construct infinite dimensional diffusion processes which solve modified stochastic quantization equations for these quantum fields on the two-dimensional torus by the Dirichlet form approach and to prove strong uniqueness of the corresponding Dirichlet operators.
Erscheinungsjahr
2023
Zeitschriftentitel
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Band
24
Ausgabe
1
Seite(n)
33-69
ISSN
0391-173X
eISSN
2036-2145
Page URI
https://pub.uni-bielefeld.de/record/2982418
Zitieren
Albeverio S, Kawabi H, Ihalache S-R, Röckner M. Strong uniqueness for Dirichlet operators related to stochastic quantization under exponential/trigonometric interactions on the two-dimensional torus. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. 2023;24(1):33-69.
Albeverio, S., Kawabi, H., Ihalache, S. - R., & Röckner, M. (2023). Strong uniqueness for Dirichlet operators related to stochastic quantization under exponential/trigonometric interactions on the two-dimensional torus. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 24(1), 33-69.
Albeverio, Sergio, Kawabi, Hiroshi, Ihalache, Stefan-Radu, and Röckner, Michael. 2023. “Strong uniqueness for Dirichlet operators related to stochastic quantization under exponential/trigonometric interactions on the two-dimensional torus”. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24 (1): 33-69.
Albeverio, S., Kawabi, H., Ihalache, S. - R., and Röckner, M. (2023). Strong uniqueness for Dirichlet operators related to stochastic quantization under exponential/trigonometric interactions on the two-dimensional torus. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24, 33-69.
Albeverio, S., et al., 2023. Strong uniqueness for Dirichlet operators related to stochastic quantization under exponential/trigonometric interactions on the two-dimensional torus. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 24(1), p 33-69.
S. Albeverio, et al., “Strong uniqueness for Dirichlet operators related to stochastic quantization under exponential/trigonometric interactions on the two-dimensional torus”, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, vol. 24, 2023, pp. 33-69.
Albeverio, S., Kawabi, H., Ihalache, S.-R., Röckner, M.: Strong uniqueness for Dirichlet operators related to stochastic quantization under exponential/trigonometric interactions on the two-dimensional torus. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze. 24, 33-69 (2023).
Albeverio, Sergio, Kawabi, Hiroshi, Ihalache, Stefan-Radu, and Röckner, Michael. “Strong uniqueness for Dirichlet operators related to stochastic quantization under exponential/trigonometric interactions on the two-dimensional torus”. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.1 (2023): 33-69.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in