The massless and the non-relativistic limit for the cubic Dirac equation

Candy T, Herr S (2023) .

Preprint | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Candy, Timothy; Herr, SebastianUniBi
Abstract / Bemerkung
Massive and massless Dirac equations with Lorentz-covariant cubic nonlinearities are considered in spatial dimension $d=2,3$. Global well-posedness of the Cauchy problem for small initial data in scale-invariant Sobolev spaces and scattering of solutions is proved by a new approach which uses bilinear Fourier restriction estimates and atomic function spaces. Furthermore, global uniform convergence results, both in the massless and in the non-relativistic limit, are proved at optimal regularity. In both regimes, these are the first results which imply convergence of scattering states and wave operators.
Erscheinungsjahr
2023
Page URI
https://pub.uni-bielefeld.de/record/2982342

Zitieren

Candy T, Herr S. The massless and the non-relativistic limit for the cubic Dirac equation. 2023.
Candy, T., & Herr, S. (2023). The massless and the non-relativistic limit for the cubic Dirac equation
Candy, Timothy, and Herr, Sebastian. 2023. “The massless and the non-relativistic limit for the cubic Dirac equation”.
Candy, T., and Herr, S. (2023). The massless and the non-relativistic limit for the cubic Dirac equation.
Candy, T., & Herr, S., 2023. The massless and the non-relativistic limit for the cubic Dirac equation.
T. Candy and S. Herr, “The massless and the non-relativistic limit for the cubic Dirac equation”, 2023.
Candy, T., Herr, S.: The massless and the non-relativistic limit for the cubic Dirac equation. (2023).
Candy, Timothy, and Herr, Sebastian. “The massless and the non-relativistic limit for the cubic Dirac equation”. (2023).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 2308.12057

Suchen in

Google Scholar