The massless and the non-relativistic limit for the cubic Dirac equation
Candy T, Herr S (2023) .
Preprint
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Candy, Timothy;
Herr, SebastianUniBi
Einrichtung
Abstract / Bemerkung
Massive and massless Dirac equations with Lorentz-covariant cubic
nonlinearities are considered in spatial dimension $d=2,3$. Global
well-posedness of the Cauchy problem for small initial data in scale-invariant
Sobolev spaces and scattering of solutions is proved by a new approach which
uses bilinear Fourier restriction estimates and atomic function spaces.
Furthermore, global uniform convergence results, both in the massless and in
the non-relativistic limit, are proved at optimal regularity. In both regimes,
these are the first results which imply convergence of scattering states and
wave operators.
Erscheinungsjahr
2023
Page URI
https://pub.uni-bielefeld.de/record/2982342
Zitieren
Candy T, Herr S. The massless and the non-relativistic limit for the cubic Dirac equation. 2023.
Candy, T., & Herr, S. (2023). The massless and the non-relativistic limit for the cubic Dirac equation
Candy, Timothy, and Herr, Sebastian. 2023. “The massless and the non-relativistic limit for the cubic Dirac equation”.
Candy, T., and Herr, S. (2023). The massless and the non-relativistic limit for the cubic Dirac equation.
Candy, T., & Herr, S., 2023. The massless and the non-relativistic limit for the cubic Dirac equation.
T. Candy and S. Herr, “The massless and the non-relativistic limit for the cubic Dirac equation”, 2023.
Candy, T., Herr, S.: The massless and the non-relativistic limit for the cubic Dirac equation. (2023).
Candy, Timothy, and Herr, Sebastian. “The massless and the non-relativistic limit for the cubic Dirac equation”. (2023).