The Universality of the Resonance Arrangement and Its Betti Numbers
Kühne L (2023)
Combinatorica 43(2): 277-298.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
s00493-023-00006-x.pdf
471.12 KB
Autor*in
Einrichtung
Abstract / Bemerkung
The resonance arrangement An is the arrangement of hyperplanes which has all non-zero 0/1-vectors in Rn as normal vectors. It is the adjoint of the Braid arrangement and is also called the all-subsets arrangement. The first result of this article shows that any rational hyperplane arrangement is the minor of some large enough resonance arrangement. Its chambers appear as regions of polynomiality in algebraic geometry, as generalized retarded functions in mathematical physics and as maximal unbalanced families that have applications in economics. One way to compute the number of chambers of any real arrangement is through the coefficients of its characteristic polynomial which are called Betti numbers. We show that the Betti numbers of the resonance arrangement are determined by a fixed combination of Stirling numbers of the second kind. Lastly, we develop exact formulas for the first two non-trivial Betti numbers of the resonance arrangement.
An extended abstract appeared in the proceedings of the conference Formal Power Series and Algebraic Combinatorics (FPSAC 2021).
An extended abstract appeared in the proceedings of the conference Formal Power Series and Algebraic Combinatorics (FPSAC 2021).
Stichworte
Matroids;
Resonance arrangement;
All-subsets arrangement;
Maximal unbalanced families;
Betti numbers
Erscheinungsjahr
2023
Zeitschriftentitel
Combinatorica
Band
43
Ausgabe
2
Seite(n)
277-298
Urheberrecht / Lizenzen
ISSN
0209-9683
eISSN
1439-6912
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2982148
Zitieren
Kühne L. The Universality of the Resonance Arrangement and Its Betti Numbers. Combinatorica. 2023;43(2):277-298.
Kühne, L. (2023). The Universality of the Resonance Arrangement and Its Betti Numbers. Combinatorica, 43(2), 277-298. https://doi.org/10.1007/s00493-023-00006-x
Kühne, Lukas. 2023. “The Universality of the Resonance Arrangement and Its Betti Numbers”. Combinatorica 43 (2): 277-298.
Kühne, L. (2023). The Universality of the Resonance Arrangement and Its Betti Numbers. Combinatorica 43, 277-298.
Kühne, L., 2023. The Universality of the Resonance Arrangement and Its Betti Numbers. Combinatorica, 43(2), p 277-298.
L. Kühne, “The Universality of the Resonance Arrangement and Its Betti Numbers”, Combinatorica, vol. 43, 2023, pp. 277-298.
Kühne, L.: The Universality of the Resonance Arrangement and Its Betti Numbers. Combinatorica. 43, 277-298 (2023).
Kühne, Lukas. “The Universality of the Resonance Arrangement and Its Betti Numbers”. Combinatorica 43.2 (2023): 277-298.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
s00493-023-00006-x.pdf
471.12 KB
Access Level
Open Access
Zuletzt Hochgeladen
2024-07-01T11:20:09Z
MD5 Prüfsumme
812d397a9a399f3a08236864b2bf05a6
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 2008.10553
Suchen in