The Universality of the Resonance Arrangement and Its Betti Numbers

Kühne L (2023)
Combinatorica 43(2): 277-298.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The resonance arrangement An is the arrangement of hyperplanes which has all non-zero 0/1-vectors in Rn as normal vectors. It is the adjoint of the Braid arrangement and is also called the all-subsets arrangement. The first result of this article shows that any rational hyperplane arrangement is the minor of some large enough resonance arrangement. Its chambers appear as regions of polynomiality in algebraic geometry, as generalized retarded functions in mathematical physics and as maximal unbalanced families that have applications in economics. One way to compute the number of chambers of any real arrangement is through the coefficients of its characteristic polynomial which are called Betti numbers. We show that the Betti numbers of the resonance arrangement are determined by a fixed combination of Stirling numbers of the second kind. Lastly, we develop exact formulas for the first two non-trivial Betti numbers of the resonance arrangement.

An extended abstract appeared in the proceedings of the conference Formal Power Series and Algebraic Combinatorics (FPSAC 2021).
Erscheinungsjahr
2023
Zeitschriftentitel
Combinatorica
Band
43
Ausgabe
2
Seite(n)
277-298
ISSN
0209-9683
eISSN
1439-6912
Page URI
https://pub.uni-bielefeld.de/record/2982148

Zitieren

Kühne L. The Universality of the Resonance Arrangement and Its Betti Numbers. Combinatorica. 2023;43(2):277-298.
Kühne, L. (2023). The Universality of the Resonance Arrangement and Its Betti Numbers. Combinatorica, 43(2), 277-298. https://doi.org/10.1007/s00493-023-00006-x
Kühne, Lukas. 2023. “The Universality of the Resonance Arrangement and Its Betti Numbers”. Combinatorica 43 (2): 277-298.
Kühne, L. (2023). The Universality of the Resonance Arrangement and Its Betti Numbers. Combinatorica 43, 277-298.
Kühne, L., 2023. The Universality of the Resonance Arrangement and Its Betti Numbers. Combinatorica, 43(2), p 277-298.
L. Kühne, “The Universality of the Resonance Arrangement and Its Betti Numbers”, Combinatorica, vol. 43, 2023, pp. 277-298.
Kühne, L.: The Universality of the Resonance Arrangement and Its Betti Numbers. Combinatorica. 43, 277-298 (2023).
Kühne, Lukas. “The Universality of the Resonance Arrangement and Its Betti Numbers”. Combinatorica 43.2 (2023): 277-298.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

arXiv: 2008.10553

Suchen in

Google Scholar