Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift

Fehrman B, Gess B (2023)
Inventiones Mathematicae.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Fehrman, Benjamin; Gess, BenjaminUniBi
Abstract / Bemerkung
Large deviations of conservative interacting particle systems, such as the zero range process, about their hydrodynamic limit and their respective rate functions lead to the analysis of the skeleton equation; a degenerate parabolic-hyperbolic PDE with irregular drift. We develop a robust well-posedness theory for such PDEs in energy critical spaces based on concepts of renormalized solutions and the equation's kinetic form. We establish these properties by proving that renormalized solutions are equivalent to classical weak solutions, extending concepts of (DiPerna and Lions in Invent. Math. 98(3):511-547, 1989; Ambrosio in Invent. Math. 158(2):227-260, 2004) to the nonlinear setting.The relevance of the results toward large deviations in interacting particle systems is demonstrated by applications to the identification of l.s.c. envelopes of restricted rate functions, to zero noise large deviations for conservative SPDE, and to the G- convergence of rate functions. The first of these solves a long-standing open problem in the large deviations for zero range processes. The second makes rigorous an informal link between the non-equilibrium statistical mechanics approaches of macroscopic fluctuation theory and fluctuating hydrodynamics.
Stichworte
35Q84; 60F10; 60H15; 60K35; 82B21; 35D30; 37H05; 60L50; 60H17; 82B31
Erscheinungsjahr
2023
Zeitschriftentitel
Inventiones Mathematicae
ISSN
0020-9910
eISSN
1432-1297
Page URI
https://pub.uni-bielefeld.de/record/2981964

Zitieren

Fehrman B, Gess B. Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. Inventiones Mathematicae. 2023.
Fehrman, B., & Gess, B. (2023). Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. Inventiones Mathematicae. https://doi.org/10.1007/s00222-023-01207-3
Fehrman, Benjamin, and Gess, Benjamin. 2023. “Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift”. Inventiones Mathematicae.
Fehrman, B., and Gess, B. (2023). Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. Inventiones Mathematicae.
Fehrman, B., & Gess, B., 2023. Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. Inventiones Mathematicae.
B. Fehrman and B. Gess, “Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift”, Inventiones Mathematicae, 2023.
Fehrman, B., Gess, B.: Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift. Inventiones Mathematicae. (2023).
Fehrman, Benjamin, and Gess, Benjamin. “Non-equilibrium large deviations and parabolic-hyperbolic PDE with irregular drift”. Inventiones Mathematicae (2023).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar