Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures
Liu J, Cheng R, Jin Y (2023)
Neurocomputing 550: 126465.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Liu, Jia;
Cheng, Ran;
Jin, YaochuUniBi
Abstract / Bemerkung
Deep neural networks have been found vulnerable to adversarial attacks, thus raising potential concerns in security-sensitive contexts. To address this problem, recent research has investigated the adversarial robustness of deep neural networks from the architectural point of view. However, searching for architectures of deep neural networks is computationally expensive, particularly when coupled with an adversarial training process. To meet the above challenge, this paper proposes a bi-fidelity multiobjective neural architecture search approach. First, we formulate the neural architecture search (NAS) problem for enhancing the adversarial robustness of deep neural networks into a multiobjective optimization problem. Specifically, in addition to using low-fidelity estimations as the primary objectives, we leverage the output of a surrogate model trained with high-fidelity evaluations as an auxiliary objective. Secondly, we reduce the computational cost by combining three performance estimation methods, i.e., parameter sharing, low-fidelity evaluation, and surrogate-based predictor. The effectiveness of the proposed approach is confirmed by extensive experiments conducted on CIFAR-10, CIFAR-100 and SVHN datasets. & COPY; 2023 Published by Elsevier B.V.
Stichworte
Adversarial attacks;
Neural architecture search;
Surrogate;
Low;
fidelity;
Multiobjectivization
Erscheinungsjahr
2023
Zeitschriftentitel
Neurocomputing
Band
550
Art.-Nr.
126465
ISSN
0925-2312
eISSN
1872-8286
Page URI
https://pub.uni-bielefeld.de/record/2981956
Zitieren
Liu J, Cheng R, Jin Y. Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures. Neurocomputing. 2023;550: 126465.
Liu, J., Cheng, R., & Jin, Y. (2023). Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures. Neurocomputing, 550, 126465. https://doi.org/10.1016/j.neucom.2023.126465
Liu, Jia, Cheng, Ran, and Jin, Yaochu. 2023. “Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures”. Neurocomputing 550: 126465.
Liu, J., Cheng, R., and Jin, Y. (2023). Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures. Neurocomputing 550:126465.
Liu, J., Cheng, R., & Jin, Y., 2023. Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures. Neurocomputing, 550: 126465.
J. Liu, R. Cheng, and Y. Jin, “Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures”, Neurocomputing, vol. 550, 2023, : 126465.
Liu, J., Cheng, R., Jin, Y.: Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures. Neurocomputing. 550, : 126465 (2023).
Liu, Jia, Cheng, Ran, and Jin, Yaochu. “Bi-fidelity evolutionary multiobjective search for adversarially robust deep neural architectures”. Neurocomputing 550 (2023): 126465.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in