The importance ofgraph databases andgraph learning forclinical applications

Walke D, Micheel D, Schallert K, Muth T, Broneske D, Saake G, Heyer R (2023)
Database: The Journal of Biological Databases and Curation 2023: baad045.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Walke, Daniel; Micheel, Daniel; Schallert, Kay; Muth, Thilo; Broneske, David; Saake, Gunter; Heyer, RobertUniBi
Abstract / Bemerkung
The increasing amount and complexity of clinical data require an appropriate way of storing and analyzing those data. Traditional approaches use a tabular structure (relational databases) for storing data and thereby complicate storing and retrieving interlinked data from the clinical domain. Graph databases provide a great solution for this by storing data in a graph as nodes (vertices) that are connected by edges (links). The underlying graph structure can be used for the subsequent data analysis (graph learning). Graph learning consists of two parts: graph representation learning and graph analytics. Graph representation learning aims to reduce high-dimensional input graphs to low-dimensional representations. Then, graph analytics uses the obtained representations for analytical tasks like visualization, classification, link prediction and clustering which can be used to solve domain-specific problems. In this survey, we review current state-of-the-art graph database management systems, graph learning algorithms and a variety of graph applications in the clinical domain. Furthermore, we provide a comprehensive use case for a clearer understanding of complex graph learning algorithms. Graphical abstract. © The Author(s) 2023. Published by Oxford University Press.
Erscheinungsjahr
2023
Zeitschriftentitel
Database: The Journal of Biological Databases and Curation
Band
2023
Art.-Nr.
baad045
eISSN
1758-0463
Page URI
https://pub.uni-bielefeld.de/record/2981195

Zitieren

Walke D, Micheel D, Schallert K, et al. The importance ofgraph databases andgraph learning forclinical applications. Database: The Journal of Biological Databases and Curation. 2023;2023: baad045.
Walke, D., Micheel, D., Schallert, K., Muth, T., Broneske, D., Saake, G., & Heyer, R. (2023). The importance ofgraph databases andgraph learning forclinical applications. Database: The Journal of Biological Databases and Curation, 2023, baad045. https://doi.org/10.1093/database/baad045
Walke, Daniel, Micheel, Daniel, Schallert, Kay, Muth, Thilo, Broneske, David, Saake, Gunter, and Heyer, Robert. 2023. “The importance ofgraph databases andgraph learning forclinical applications”. Database: The Journal of Biological Databases and Curation 2023: baad045.
Walke, D., Micheel, D., Schallert, K., Muth, T., Broneske, D., Saake, G., and Heyer, R. (2023). The importance ofgraph databases andgraph learning forclinical applications. Database: The Journal of Biological Databases and Curation 2023:baad045.
Walke, D., et al., 2023. The importance ofgraph databases andgraph learning forclinical applications. Database: The Journal of Biological Databases and Curation, 2023: baad045.
D. Walke, et al., “The importance ofgraph databases andgraph learning forclinical applications”, Database: The Journal of Biological Databases and Curation, vol. 2023, 2023, : baad045.
Walke, D., Micheel, D., Schallert, K., Muth, T., Broneske, D., Saake, G., Heyer, R.: The importance ofgraph databases andgraph learning forclinical applications. Database: The Journal of Biological Databases and Curation. 2023, : baad045 (2023).
Walke, Daniel, Micheel, Daniel, Schallert, Kay, Muth, Thilo, Broneske, David, Saake, Gunter, and Heyer, Robert. “The importance ofgraph databases andgraph learning forclinical applications”. Database: The Journal of Biological Databases and Curation 2023 (2023): baad045.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 37428679
PubMed | Europe PMC

Suchen in

Google Scholar