Averaging principle for stochastic complex Ginzburg-Landau equations
Cheng M, Liu Z, Röckner M (2023)
Journal of Differential Equations 368: 58-104.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Cheng, MengyuUniBi;
Liu, Zhenxin;
Röckner, MichaelUniBi
Einrichtung
Abstract / Bemerkung
Averaging principle is an effective method for investigating dynamical systems with highly oscillating components. In this paper, we study three types of averaging principle for stochastic complex Ginzburg-Landau equations. Firstly, we prove that the solution of the original equation converges to that of the averaged equation on finite intervals as the time scale & epsilon; goes to zero when the initial data are the same. Secondly, we show that there exists a unique recurrent solution (in particular, periodic, almost periodic, almost automorphic, etc.) to the original equation in a neighborhood of the stationary solution of the av-eraged equation when the time scale is small. Finally, we establish the global averaging principle in weak sense, i.e. we show that the attractor of original system tends to that of the averaged equation in probability measure space as & epsilon; goes to zero.& COPY; 2023 Elsevier Inc. All rights reserved.
Stichworte
Stochastic complex Ginzburg-Landau equation;
Averaging principle;
First;
Bogolyubov theorem;
Second Bogolyubov theorem;
Global averaging;
principle;
Measure attractor
Erscheinungsjahr
2023
Zeitschriftentitel
Journal of Differential Equations
Band
368
Seite(n)
58-104
ISSN
0022-0396
eISSN
1090-2732
Page URI
https://pub.uni-bielefeld.de/record/2980948
Zitieren
Cheng M, Liu Z, Röckner M. Averaging principle for stochastic complex Ginzburg-Landau equations. Journal of Differential Equations. 2023;368:58-104.
Cheng, M., Liu, Z., & Röckner, M. (2023). Averaging principle for stochastic complex Ginzburg-Landau equations. Journal of Differential Equations, 368, 58-104. https://doi.org/10.1016/j.jde.2023.05.031
Cheng, Mengyu, Liu, Zhenxin, and Röckner, Michael. 2023. “Averaging principle for stochastic complex Ginzburg-Landau equations”. Journal of Differential Equations 368: 58-104.
Cheng, M., Liu, Z., and Röckner, M. (2023). Averaging principle for stochastic complex Ginzburg-Landau equations. Journal of Differential Equations 368, 58-104.
Cheng, M., Liu, Z., & Röckner, M., 2023. Averaging principle for stochastic complex Ginzburg-Landau equations. Journal of Differential Equations, 368, p 58-104.
M. Cheng, Z. Liu, and M. Röckner, “Averaging principle for stochastic complex Ginzburg-Landau equations”, Journal of Differential Equations, vol. 368, 2023, pp. 58-104.
Cheng, M., Liu, Z., Röckner, M.: Averaging principle for stochastic complex Ginzburg-Landau equations. Journal of Differential Equations. 368, 58-104 (2023).
Cheng, Mengyu, Liu, Zhenxin, and Röckner, Michael. “Averaging principle for stochastic complex Ginzburg-Landau equations”. Journal of Differential Equations 368 (2023): 58-104.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in