Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature
Erbar M, Fathi M (2018)
J. Funct. Anal. 274(11): 3056-3089.
Zeitschriftenaufsatz | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Erbar, MatthiasUniBi;
Fathi, Max
Einrichtung
Erscheinungsjahr
2018
Zeitschriftentitel
J. Funct. Anal.
Band
274
Ausgabe
11
Seite(n)
3056-3089
ISSN
0022-1236,1096-0783
Page URI
https://pub.uni-bielefeld.de/record/2980849
Zitieren
Erbar M, Fathi M. Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature. J. Funct. Anal. 2018;274(11):3056-3089.
Erbar, M., & Fathi, M. (2018). Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature. J. Funct. Anal., 274(11), 3056-3089. https://doi.org/10.1016/j.jfa.2018.03.011
Erbar, Matthias, and Fathi, Max. 2018. “Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature”. J. Funct. Anal. 274 (11): 3056-3089.
Erbar, M., and Fathi, M. (2018). Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature. J. Funct. Anal. 274, 3056-3089.
Erbar, M., & Fathi, M., 2018. Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature. J. Funct. Anal., 274(11), p 3056-3089.
M. Erbar and M. Fathi, “Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature”, J. Funct. Anal., vol. 274, 2018, pp. 3056-3089.
Erbar, M., Fathi, M.: Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature. J. Funct. Anal. 274, 3056-3089 (2018).
Erbar, Matthias, and Fathi, Max. “Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for Markov chains with non-negative Ricci curvature”. J. Funct. Anal. 274.11 (2018): 3056-3089.