Tiny adversarial multi-objective one-shot neural architecture search

Xie G, Wang J, Yu G, Lyu J, Zheng F, Jin Y (2023)
Complex & Intelligent Systems 9.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.74 MB
Autor*in
Xie, Guoyang; Wang, Jinbao; Yu, Guo; Lyu, Jiayi; Zheng, Feng; Jin, YaochuUniBi
Abstract / Bemerkung
The widely employed tiny neural networks (TNNs) in mobile devices are vulnerable to adversarial attacks. However, more advanced research on the robustness of TNNs is highly in demand. This work focuses on improving the robustness of TNNs without sacrificing the model’s accuracy. To find the optimal trade-off networks in terms of the adversarial accuracy, clean accuracy, and model size, we present TAM-NAS, a tiny adversarial multi-objective one-shot network architecture search method. First, we build a novel search space comprised of new tiny blocks and channels to establish a balance between the model size and adversarial performance. Then, we demonstrate how the supernet facilitates the acquisition of the optimal subnet under white-box adversarial attacks, provided that the supernet significantly impacts the subnet’s performance. Concretely, we investigate a new adversarial training paradigm by evaluating the adversarial transferability, the width of the supernet, and the distinction between training subnets from scratch and fine-tuning. Finally, we undertake statistical analysis for the layer-wise combination of specific blocks and channels on the first non-dominated front, which can be utilized as a design guideline for the design of TNNs.
Erscheinungsjahr
2023
Zeitschriftentitel
Complex & Intelligent Systems
Band
9
ISSN
2199-4536
eISSN
2198-6053
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2980780

Zitieren

Xie G, Wang J, Yu G, Lyu J, Zheng F, Jin Y. Tiny adversarial multi-objective one-shot neural architecture search. Complex & Intelligent Systems. 2023;9.
Xie, G., Wang, J., Yu, G., Lyu, J., Zheng, F., & Jin, Y. (2023). Tiny adversarial multi-objective one-shot neural architecture search. Complex & Intelligent Systems, 9. https://doi.org/10.1007/s40747-023-01139-8
Xie, Guoyang, Wang, Jinbao, Yu, Guo, Lyu, Jiayi, Zheng, Feng, and Jin, Yaochu. 2023. “Tiny adversarial multi-objective one-shot neural architecture search”. Complex & Intelligent Systems 9.
Xie, G., Wang, J., Yu, G., Lyu, J., Zheng, F., and Jin, Y. (2023). Tiny adversarial multi-objective one-shot neural architecture search. Complex & Intelligent Systems 9.
Xie, G., et al., 2023. Tiny adversarial multi-objective one-shot neural architecture search. Complex & Intelligent Systems, 9.
G. Xie, et al., “Tiny adversarial multi-objective one-shot neural architecture search”, Complex & Intelligent Systems, vol. 9, 2023.
Xie, G., Wang, J., Yu, G., Lyu, J., Zheng, F., Jin, Y.: Tiny adversarial multi-objective one-shot neural architecture search. Complex & Intelligent Systems. 9, (2023).
Xie, Guoyang, Wang, Jinbao, Yu, Guo, Lyu, Jiayi, Zheng, Feng, and Jin, Yaochu. “Tiny adversarial multi-objective one-shot neural architecture search”. Complex & Intelligent Systems 9 (2023).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2023-07-12T07:36:13Z
MD5 Prüfsumme
97598d2b853dd981ef24468e6f78b13a


Link(s) zu Volltext(en)
Access Level
OA Open Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar