Approximation of splines in Wasserstein spaces
Erbar M, Justiniano J, Rumpf M (2024)
ESAIM:Control, Optimisation and Calculus of Variations 30: 64.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Erbar, MatthiasUniBi;
Justiniano, Jorge;
Rumpf, Martin
Einrichtung
Abstract / Bemerkung
This paper investigates a time discrete variational model for splines in Wasserstein spaces to interpolate probability measures. Cubic splines in Euclidean space are known to minimize the integrated squared acceleration subject to a set of interpolation constraints. As generalization on the space of probability measures the integral of the squared acceleration is considered as a spline energy and regularized by addition of the usual action functional. Both energies are then discretized in time using local Wasserstein-2 distances and the generalized Wasserstein barycenter. The existence of time discrete regularized splines for given interpolation conditions is established. On the subspace of Gaussian distributions, the spline interpolation problem is solved explicitly and consistency in the discrete to continuous limit is shown. The computation of time discrete splines is implemented numerically, based on entropy regularization and the Sinkhorn algorithm. A variant of Nesterov’s accelerated gradient descent algorithm is applied for the minimization of the fully discrete functional. A variety of numerical examples demonstrate the robustness of the approach and show striking characteristics of the method. As a particular application the spline interpolation for synthesized textures is presented.
Erscheinungsjahr
2024
Zeitschriftentitel
ESAIM:Control, Optimisation and Calculus of Variations
Band
30
Art.-Nr.
64
ISSN
1292-8119
eISSN
1262-3377
Page URI
https://pub.uni-bielefeld.de/record/2980769
Zitieren
Erbar M, Justiniano J, Rumpf M. Approximation of splines in Wasserstein spaces. ESAIM:Control, Optimisation and Calculus of Variations . 2024;30: 64.
Erbar, M., Justiniano, J., & Rumpf, M. (2024). Approximation of splines in Wasserstein spaces. ESAIM:Control, Optimisation and Calculus of Variations , 30, 64. https://doi.org/10.1051/cocv/2024008
Erbar, Matthias, Justiniano, Jorge, and Rumpf, Martin. 2024. “Approximation of splines in Wasserstein spaces”. ESAIM:Control, Optimisation and Calculus of Variations 30: 64.
Erbar, M., Justiniano, J., and Rumpf, M. (2024). Approximation of splines in Wasserstein spaces. ESAIM:Control, Optimisation and Calculus of Variations 30:64.
Erbar, M., Justiniano, J., & Rumpf, M., 2024. Approximation of splines in Wasserstein spaces. ESAIM:Control, Optimisation and Calculus of Variations , 30: 64.
M. Erbar, J. Justiniano, and M. Rumpf, “Approximation of splines in Wasserstein spaces”, ESAIM:Control, Optimisation and Calculus of Variations , vol. 30, 2024, : 64.
Erbar, M., Justiniano, J., Rumpf, M.: Approximation of splines in Wasserstein spaces. ESAIM:Control, Optimisation and Calculus of Variations . 30, : 64 (2024).
Erbar, Matthias, Justiniano, Jorge, and Rumpf, Martin. “Approximation of splines in Wasserstein spaces”. ESAIM:Control, Optimisation and Calculus of Variations 30 (2024): 64.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 2302.10682
Suchen in