FedMed-GAN: Federated domain translation on unsupervised cross- modality brain image synthesis

Wang J, Xie G, Huang Y, Lyu J, Zheng F, Zheng Y, Jin Y (2023)
Neurocomputing 546: 126282.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wang, Jinbao; Xie, Guoyang; Huang, Yawen; Lyu, Jiayi; Zheng, Feng; Zheng, Yefeng; Jin, YaochuUniBi
Abstract / Bemerkung
Utilizing multi-modal neuroimaging data is proven to be effective in investigating human cognitive activ-ities and certain pathologies. However, it is not practical to obtain the full set of paired neuroimaging data centrally since the collection faces several constraints, e.g., high examination cost, long acquisition time, and image corruption. In addition, these data are dispersed into different medical institutions and thus cannot be aggregated for centralized training considering the privacy issues. There is a clear need to launch federated learning and facilitate the integration of dispersed data from different institutions. In this paper, we propose a new benchmark for federated domain translation on unsupervised brain image synthesis (FedMed-GAN) to bridge the gap between federated learning and medical GAN. FedMed-GAN mitigates the mode collapse without sacrificing the performance of generators, and is widely applied to different proportions of unpaired and paired data with variation adaptation properties. We treat the gradient penalties using the federated averaging algorithm and then leverage the differential privacy gra-dient descent to regularize the training dynamics. A comprehensive evaluation is provided for comparing FedMed-GAN and other centralized methods, demonstrating that the proposed algorithm outperforms the state-of-the-art. Our code is available at: https://github.com/M-3LAB/FedMed-GAN.(c) 2023 Elsevier B.V. All rights reserved.
Stichworte
Federated learning; Unsupervised learning; Cross-modality synthesis; Brain image; Deep learning
Erscheinungsjahr
2023
Zeitschriftentitel
Neurocomputing
Band
546
Art.-Nr.
126282
ISSN
0925-2312
eISSN
1872-8286
Page URI
https://pub.uni-bielefeld.de/record/2980536

Zitieren

Wang J, Xie G, Huang Y, et al. FedMed-GAN: Federated domain translation on unsupervised cross- modality brain image synthesis. Neurocomputing. 2023;546: 126282.
Wang, J., Xie, G., Huang, Y., Lyu, J., Zheng, F., Zheng, Y., & Jin, Y. (2023). FedMed-GAN: Federated domain translation on unsupervised cross- modality brain image synthesis. Neurocomputing, 546, 126282. https://doi.org/10.1016/j.neucom.2023.126282
Wang, Jinbao, Xie, Guoyang, Huang, Yawen, Lyu, Jiayi, Zheng, Feng, Zheng, Yefeng, and Jin, Yaochu. 2023. “FedMed-GAN: Federated domain translation on unsupervised cross- modality brain image synthesis”. Neurocomputing 546: 126282.
Wang, J., Xie, G., Huang, Y., Lyu, J., Zheng, F., Zheng, Y., and Jin, Y. (2023). FedMed-GAN: Federated domain translation on unsupervised cross- modality brain image synthesis. Neurocomputing 546:126282.
Wang, J., et al., 2023. FedMed-GAN: Federated domain translation on unsupervised cross- modality brain image synthesis. Neurocomputing, 546: 126282.
J. Wang, et al., “FedMed-GAN: Federated domain translation on unsupervised cross- modality brain image synthesis”, Neurocomputing, vol. 546, 2023, : 126282.
Wang, J., Xie, G., Huang, Y., Lyu, J., Zheng, F., Zheng, Y., Jin, Y.: FedMed-GAN: Federated domain translation on unsupervised cross- modality brain image synthesis. Neurocomputing. 546, : 126282 (2023).
Wang, Jinbao, Xie, Guoyang, Huang, Yawen, Lyu, Jiayi, Zheng, Feng, Zheng, Yefeng, and Jin, Yaochu. “FedMed-GAN: Federated domain translation on unsupervised cross- modality brain image synthesis”. Neurocomputing 546 (2023): 126282.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar