Multidimensional singular control and related Skorokhod problem: Sufficient conditions for the characterization of optimal controls

Dianetti J, Ferrari G (2023)
Stochastic Processes and their Applications 162: 547-592.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We characterize the optimal control for a class of singular stochastic control problems as the unique solution to a related Skorokhod reflection problem. The optimization problems concern the minimization of a discounted cost over an infinite time-horizon through a process of bounded variation affecting an Ito-diffusion. The setting is multidimensional, the drift of the state equation and the costs are convex, the volatility matrix can be constant or linear in the state. Our result applies to a relevant class of linear-quadratic models and it allows to construct the optimal control in degenerate and non degenerate settings considered in the literature.& COPY; 2023 Elsevier B.V. All rights reserved.
Stichworte
Dynkin games; Reflected diffusion; Singular stochastic control; Skorokhod problem; Variational inequalities
Erscheinungsjahr
2023
Zeitschriftentitel
Stochastic Processes and their Applications
Band
162
Seite(n)
547-592
ISSN
0304-4149
eISSN
1879-209X
Page URI
https://pub.uni-bielefeld.de/record/2980533

Zitieren

Dianetti J, Ferrari G. Multidimensional singular control and related Skorokhod problem: Sufficient conditions for the characterization of optimal controls. Stochastic Processes and their Applications. 2023;162:547-592.
Dianetti, J., & Ferrari, G. (2023). Multidimensional singular control and related Skorokhod problem: Sufficient conditions for the characterization of optimal controls. Stochastic Processes and their Applications, 162, 547-592. https://doi.org/10.1016/j.spa.2023.05.006
Dianetti, Jodi, and Ferrari, Giorgio. 2023. “Multidimensional singular control and related Skorokhod problem: Sufficient conditions for the characterization of optimal controls”. Stochastic Processes and their Applications 162: 547-592.
Dianetti, J., and Ferrari, G. (2023). Multidimensional singular control and related Skorokhod problem: Sufficient conditions for the characterization of optimal controls. Stochastic Processes and their Applications 162, 547-592.
Dianetti, J., & Ferrari, G., 2023. Multidimensional singular control and related Skorokhod problem: Sufficient conditions for the characterization of optimal controls. Stochastic Processes and their Applications, 162, p 547-592.
J. Dianetti and G. Ferrari, “Multidimensional singular control and related Skorokhod problem: Sufficient conditions for the characterization of optimal controls”, Stochastic Processes and their Applications, vol. 162, 2023, pp. 547-592.
Dianetti, J., Ferrari, G.: Multidimensional singular control and related Skorokhod problem: Sufficient conditions for the characterization of optimal controls. Stochastic Processes and their Applications. 162, 547-592 (2023).
Dianetti, Jodi, and Ferrari, Giorgio. “Multidimensional singular control and related Skorokhod problem: Sufficient conditions for the characterization of optimal controls”. Stochastic Processes and their Applications 162 (2023): 547-592.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar