Complexes of injective -modules
Benson D, Krause H (2008)
Algebra & Number Theory 2(1): 1-30.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Benson, David;
Krause, HenningUniBi
Einrichtung
Abstract / Bemerkung
Let G be a finite group and k be a field of characteristic p. We investigate the homotopy category K(InjkG) of the category C(InjkG) of complexes of injective (= projective) kG-modules. If G is a p-group, this category is equivalent to the derived category Ddg(C∗(BG;k)) of the cochains on the classifying space; if G is not a p-group, it has better properties than this derived category. The ordinary tensor product in K(InjkG) with diagonal G-action corresponds to the E∞ tensor product on Ddg(C∗(BG;k)).
We show that K(InjkG) can be regarded as a slight enlargement of the stable module category StModkG. It has better formal properties inasmuch as the ordinary cohomology ring H∗(G,k) is better behaved than the Tate cohomology ring Ĥ∗(G,k).
It is also better than the derived category D(ModkG), because the compact objects in K(InjkG) form a copy of the bounded derived category Db(modkG), whereas the compact objects in D(ModkG) consist of just the perfect complexes.
Finally, we develop the theory of support varieties and homotopy colimits in K(InjkG).
Erscheinungsjahr
2008
Zeitschriftentitel
Algebra & Number Theory
Band
2
Ausgabe
1
Seite(n)
1-30
ISSN
1937-0652
Page URI
https://pub.uni-bielefeld.de/record/2980479
Zitieren
Benson D, Krause H. Complexes of injective -modules. Algebra & Number Theory. 2008;2(1):1-30.
Benson, D., & Krause, H. (2008). Complexes of injective -modules. Algebra & Number Theory, 2(1), 1-30. https://doi.org/10.2140/ant.2008.2.1
Benson, David, and Krause, Henning. 2008. “Complexes of injective -modules”. Algebra & Number Theory 2 (1): 1-30.
Benson, D., and Krause, H. (2008). Complexes of injective -modules. Algebra & Number Theory 2, 1-30.
Benson, D., & Krause, H., 2008. Complexes of injective -modules. Algebra & Number Theory, 2(1), p 1-30.
D. Benson and H. Krause, “Complexes of injective -modules”, Algebra & Number Theory, vol. 2, 2008, pp. 1-30.
Benson, D., Krause, H.: Complexes of injective -modules. Algebra & Number Theory. 2, 1-30 (2008).
Benson, David, and Krause, Henning. “Complexes of injective -modules”. Algebra & Number Theory 2.1 (2008): 1-30.