Markov-modulated marked Poisson processes for modeling disease dynamics based on medical claims data
Mews S, Surmann B, Hasemann L, Elkenkamp S (2023)
Statistics in Medicine 42(21): 3804-3815.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Einrichtung
SFB/Transregio 212 „A Novel Synthesis of Individualisation across Behaviour, Ecology and Evolution: Niche Choice, Niche Conformance, Niche Construction (NC³)“
Fakultät für Wirtschaftswissenschaften > Lehrstuhl für Statistik und Datenanalyse
Fakultät für Gesundheitswissenschaften > AG 5 Gesundheitsökonomie und Gesundheitsmanagement
Fakultät für Wirtschaftswissenschaften > Lehrstuhl für Statistik und Datenanalyse
Fakultät für Gesundheitswissenschaften > AG 5 Gesundheitsökonomie und Gesundheitsmanagement
Abstract / Bemerkung
We explore Markov-modulated marked Poisson processes (MMMPPs) as a natural framework for modeling patients' disease dynamics over time based on medical claims data. In claims data, observations do not only occur at random points in time but are also informative, that is, driven by unobserved disease levels, as poor health conditions usually lead to more frequent interactions with the health care system. Therefore, we model the observation process as a Markov-modulated Poisson process, where the rate of health care interactions is governed by a continuous-time Markov chain. Its states serve as proxies for the patients' latent disease levels and further determine the distribution of additional data collected at each observation time, the so-called marks. Overall, MMMPPs jointly model observations and their informative time points by comprising two state-dependent processes: the observation process (corresponding to the event times) and the mark process (corresponding to event-specific information), which both depend on the underlying states. The approach is illustrated using claims data from patients diagnosed with chronic obstructive pulmonary disease by modeling their drug use and the interval lengths between consecutive physician consultations. The results indicate that MMMPPs are able to detect distinct patterns of health care utilization related to disease processes and reveal interindividual differences in the state-switching dynamics.
Stichworte
chronic obstructive pulmonary disease;
continuous time;
disease process;
hidden Markov model;
informative observation times;
maximum likelihood
Erscheinungsjahr
2023
Zeitschriftentitel
Statistics in Medicine
Band
42
Ausgabe
21
Seite(n)
3804 - 3815
Urheberrecht / Lizenzen
ISSN
0277-6715
eISSN
1097-0258
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2980256
Zitieren
Mews S, Surmann B, Hasemann L, Elkenkamp S. Markov-modulated marked Poisson processes for modeling disease dynamics based on medical claims data. Statistics in Medicine . 2023;42(21):3804-3815.
Mews, S., Surmann, B., Hasemann, L., & Elkenkamp, S. (2023). Markov-modulated marked Poisson processes for modeling disease dynamics based on medical claims data. Statistics in Medicine , 42(21), 3804-3815. https://doi.org/10.1002/sim.9832
Mews, Sina, Surmann, Bastian, Hasemann, Lena, and Elkenkamp, Svenja. 2023. “Markov-modulated marked Poisson processes for modeling disease dynamics based on medical claims data”. Statistics in Medicine 42 (21): 3804-3815.
Mews, S., Surmann, B., Hasemann, L., and Elkenkamp, S. (2023). Markov-modulated marked Poisson processes for modeling disease dynamics based on medical claims data. Statistics in Medicine 42, 3804-3815.
Mews, S., et al., 2023. Markov-modulated marked Poisson processes for modeling disease dynamics based on medical claims data. Statistics in Medicine , 42(21), p 3804-3815.
S. Mews, et al., “Markov-modulated marked Poisson processes for modeling disease dynamics based on medical claims data”, Statistics in Medicine , vol. 42, 2023, pp. 3804-3815.
Mews, S., Surmann, B., Hasemann, L., Elkenkamp, S.: Markov-modulated marked Poisson processes for modeling disease dynamics based on medical claims data. Statistics in Medicine . 42, 3804-3815 (2023).
Mews, Sina, Surmann, Bastian, Hasemann, Lena, and Elkenkamp, Svenja. “Markov-modulated marked Poisson processes for modeling disease dynamics based on medical claims data”. Statistics in Medicine 42.21 (2023): 3804-3815.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2024-02-06T07:47:13Z
MD5 Prüfsumme
90a2bff8d861b2051bbf0cf39fd3323a
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 37308135
PubMed | Europe PMC
Suchen in