Central limit theorems for stochastic gradient descent with averaging for stable manifolds

Dereich S, Kassing S (2023)
Electronic Journal of Probability 28: 1-48.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dereich, Steffen; Kassing, SebastianUniBi
Abstract / Bemerkung
In this article, we establish new central limit theorems for Ruppert-Polyak averaged stochastic gradient descent schemes. Compared to previous work we do not assume that convergence occurs to an isolated attractor but instead allow convergence to a stable manifold. On the stable manifold the target function is constant and the oscillations of the iterates in the tangential direction may be significantly larger than the ones in the normal direction. We still recover a central limit theorem for the averaged scheme in the normal direction with the same rates as in the case of isolated attractors. In the setting where the magnitude of the random perturbation is of constant order, our research covers step-sizes -yn = C gamma n-gamma with C gamma > 0 and -y is an element of (34, 1). In particular, we show that the beneficial effect of averaging prevails in more general situations.
Stichworte
stochastic approximation; Robbins-Monro; Ruppert-Polyak average; deep; learning; stable manifold
Erscheinungsjahr
2023
Zeitschriftentitel
Electronic Journal of Probability
Band
28
Seite(n)
1-48
eISSN
1083-6489
Page URI
https://pub.uni-bielefeld.de/record/2980003

Zitieren

Dereich S, Kassing S. Central limit theorems for stochastic gradient descent with averaging for stable manifolds. Electronic Journal of Probability. 2023;28:1-48.
Dereich, S., & Kassing, S. (2023). Central limit theorems for stochastic gradient descent with averaging for stable manifolds. Electronic Journal of Probability, 28, 1-48. https://doi.org/10.1214/23-EJP947
Dereich, Steffen, and Kassing, Sebastian. 2023. “Central limit theorems for stochastic gradient descent with averaging for stable manifolds”. Electronic Journal of Probability 28: 1-48.
Dereich, S., and Kassing, S. (2023). Central limit theorems for stochastic gradient descent with averaging for stable manifolds. Electronic Journal of Probability 28, 1-48.
Dereich, S., & Kassing, S., 2023. Central limit theorems for stochastic gradient descent with averaging for stable manifolds. Electronic Journal of Probability, 28, p 1-48.
S. Dereich and S. Kassing, “Central limit theorems for stochastic gradient descent with averaging for stable manifolds”, Electronic Journal of Probability, vol. 28, 2023, pp. 1-48.
Dereich, S., Kassing, S.: Central limit theorems for stochastic gradient descent with averaging for stable manifolds. Electronic Journal of Probability. 28, 1-48 (2023).
Dereich, Steffen, and Kassing, Sebastian. “Central limit theorems for stochastic gradient descent with averaging for stable manifolds”. Electronic Journal of Probability 28 (2023): 1-48.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar