Braid groups and mapping class groups for 2-orbifolds

Flechsig J (2023)
Bielefeld: Universität Bielefeld.

Bielefelder E-Dissertation | Englisch
 
Download
OA 2.75 MB
Gutachter*in / Betreuer*in
Abstract / Bemerkung
The main achievement of this thesis is that pure orbifold braid groups fit into an exact sequence 1$\\rightarrow$ $K$$\\rightarrow$$\\pi_1^{^{orb}}$($\\Sigma_\\Gamma$($n-1+L$))$\\xrightarrow{\\iota_{PZ_n}}$$PZ_n$($\\Sigma_\\Gamma$($L$))$\\xrightarrow{\\pi_{PZ_n}}$$PZ_{n-1}$($\\Sigma_\\Gamma$($L$))$\\rightarrow$1.

In particular, we observe that the kernel $K$ of $\iota_{PZ_n}$ is non-trivial. This corrects Theorem 2.14 in [42]. Using the relation pictured in the figure on the title page, we construct non-trivial elements in the kernel. Moreover, we determine $K$. For this purpose, we introduce orbifold mapping class groups (with marked points) and establish a Birman exact sequence for them. Comparing the orbifold mapping class groups with the orbifold braid groups, reveals a surprising behavior: in contrast to the classical case, the orbifold braid group is a proper quotient of the orbifold mapping class group. In particular, this yields a presentation of the pure orbifold braid group which allows us to determine the kernel $K$.

Furthermore, we generalize a result of Allcock [2] about Artin groups contained in orbifold braid groups and we analyze the connectivity of bipartite matching complexes of $\Gamma$-arcs. This allows us to deduce highly generating families of subgroups in Map$_n^{id,orb}$($\\Sigma_\\Gamma$($L$)). For $Z_n$($\\Sigma_\\Gamma$($L$)) and the contained Artin groups, we also obtain a highly generating family of subgroups.
Jahr
2023
Seite(n)
165
Page URI
https://pub.uni-bielefeld.de/record/2979933

Zitieren

Flechsig J. Braid groups and mapping class groups for 2-orbifolds. Bielefeld: Universität Bielefeld; 2023.
Flechsig, J. (2023). Braid groups and mapping class groups for 2-orbifolds. Bielefeld: Universität Bielefeld. https://doi.org/10.4119/unibi/2979933
Flechsig, Jonas. 2023. Braid groups and mapping class groups for 2-orbifolds. Bielefeld: Universität Bielefeld.
Flechsig, J. (2023). Braid groups and mapping class groups for 2-orbifolds. Bielefeld: Universität Bielefeld.
Flechsig, J., 2023. Braid groups and mapping class groups for 2-orbifolds, Bielefeld: Universität Bielefeld.
J. Flechsig, Braid groups and mapping class groups for 2-orbifolds, Bielefeld: Universität Bielefeld, 2023.
Flechsig, J.: Braid groups and mapping class groups for 2-orbifolds. Universität Bielefeld, Bielefeld (2023).
Flechsig, Jonas. Braid groups and mapping class groups for 2-orbifolds. Bielefeld: Universität Bielefeld, 2023.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2023-06-15T10:05:19Z
MD5 Prüfsumme
2a730f133a3499cdb43c764966eb8f43


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar