Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups
Blessing J, Kupper M, Nendel M (2023) Center for Mathematical Economics Working Papers; 680.
Bielefeld: Center for Mathematical Economics.
Diskussionspapier
| Veröffentlicht | Englisch
Download
IMW_working_paper_680.pdf
813.80 KB
Autor*in
Blessing, Jonas;
Kupper, Michael;
Nendel, MaxUniBi
Abstract / Bemerkung
Based on the convergence of their infinitesimal generators in the mixed
topology, we provide a stability result for strongly continuous convex monotone semigroups on spaces of continuous functions. In contrast to previous results, we do not
rely on the theory of viscosity solutions but use a recent comparison principle which
uniquely determines the semigroup via its Γ-generator defined on the Lipschitz set and
therefore resembles the classical analogue from the linear case. The framework also
allows for discretizations both in time and space and covers a variety of applications.
This includes Euler schemes and Yosida-type approximations for upper envelopes of
families of linear semigroups, stability results and finite-difference schemes for convex
HJB equations, Freidlin–Wentzell-type results and Markov chain approximations for
a class of stochastic optimal control problems and continuous-time Markov processes
with uncertain transition probabilities.
MSC 2020: Primary 35B35; 47H20; Secondary 47H07; 49M25; 60G65
MSC 2020: Primary 35B35; 47H20; Secondary 47H07; 49M25; 60G65
Stichworte
convex monotone semigroup;
infinitesimal generator;
convergence of semigroups;
Euler formula;
optimal control;
finite-difference scheme;
Markov chain approximation;
large deviations
Erscheinungsjahr
2023
Serientitel
Center for Mathematical Economics Working Papers
Band
680
Seite(n)
53
Urheberrecht / Lizenzen
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2979730
Zitieren
Blessing J, Kupper M, Nendel M. Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups. Center for Mathematical Economics Working Papers. Vol 680. Bielefeld: Center for Mathematical Economics; 2023.
Blessing, J., Kupper, M., & Nendel, M. (2023). Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups (Center for Mathematical Economics Working Papers, 680). Bielefeld: Center for Mathematical Economics.
Blessing, Jonas, Kupper, Michael, and Nendel, Max. 2023. Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups. Vol. 680. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
Blessing, J., Kupper, M., and Nendel, M. (2023). Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups. Center for Mathematical Economics Working Papers, 680, Bielefeld: Center for Mathematical Economics.
Blessing, J., Kupper, M., & Nendel, M., 2023. Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups, Center for Mathematical Economics Working Papers, no.680, Bielefeld: Center for Mathematical Economics.
J. Blessing, M. Kupper, and M. Nendel, Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups, Center for Mathematical Economics Working Papers, vol. 680, Bielefeld: Center for Mathematical Economics, 2023.
Blessing, J., Kupper, M., Nendel, M.: Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups. Center for Mathematical Economics Working Papers, 680. Center for Mathematical Economics, Bielefeld (2023).
Blessing, Jonas, Kupper, Michael, and Nendel, Max. Convergence of Infintesimal Generators and Stability of Convex Montone Semigroups. Bielefeld: Center for Mathematical Economics, 2023. Center for Mathematical Economics Working Papers. 680.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
IMW_working_paper_680.pdf
813.80 KB
Access Level
Open Access
Zuletzt Hochgeladen
2023-06-05T08:42:24Z
MD5 Prüfsumme
e6af9f5a64b2cc78237813eb296caf8a