A Markov process for a continuum infinite particle system with attraction*
Kozitsky Y, Röckner M (2023)
Electronic Journal of Probability 28: 1-59.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kozitsky, Yuri;
Röckner, MichaelUniBi
Einrichtung
Abstract / Bemerkung
An infinite system of point particles placed in Rd is studied. The particles are of two types; they perform random walks in the course of which those of distinct type repel each other. The interaction of this kind induces an effective multi-body attraction of the same type particles, which leads to the multiplicity of states of thermal equilibrium in such systems. The pure states of the system are locally finite counting measures on Rd. The set of such states Gamma 2 is equipped with the vague topology and the corresponding Borel sigma-field. For a special class Pexp of probability measures defined on Gamma 2, we prove the existence of a family {Pt,mu : t >= 0, mu is an element of Pexp} of probability measures defined on the space of cadlag paths with values in Gamma 2, which is a unique solution of the restricted martingale problem for the mentioned stochastic dynamics. Thereby, the corresponding Markov process is specified.
Stichworte
measure-valued Markov process;
point process;
martingale solution;
Fokker-Planck equation;
stochastic semigroup
Erscheinungsjahr
2023
Zeitschriftentitel
Electronic Journal of Probability
Band
28
Seite(n)
1-59
eISSN
1083-6489
Page URI
https://pub.uni-bielefeld.de/record/2979711
Zitieren
Kozitsky Y, Röckner M. A Markov process for a continuum infinite particle system with attraction*. Electronic Journal of Probability . 2023;28:1-59.
Kozitsky, Y., & Röckner, M. (2023). A Markov process for a continuum infinite particle system with attraction*. Electronic Journal of Probability , 28, 1-59. https://doi.org/10.1214/23-EJP952
Kozitsky, Yuri, and Röckner, Michael. 2023. “A Markov process for a continuum infinite particle system with attraction*”. Electronic Journal of Probability 28: 1-59.
Kozitsky, Y., and Röckner, M. (2023). A Markov process for a continuum infinite particle system with attraction*. Electronic Journal of Probability 28, 1-59.
Kozitsky, Y., & Röckner, M., 2023. A Markov process for a continuum infinite particle system with attraction*. Electronic Journal of Probability , 28, p 1-59.
Y. Kozitsky and M. Röckner, “A Markov process for a continuum infinite particle system with attraction*”, Electronic Journal of Probability , vol. 28, 2023, pp. 1-59.
Kozitsky, Y., Röckner, M.: A Markov process for a continuum infinite particle system with attraction*. Electronic Journal of Probability . 28, 1-59 (2023).
Kozitsky, Yuri, and Röckner, Michael. “A Markov process for a continuum infinite particle system with attraction*”. Electronic Journal of Probability 28 (2023): 1-59.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in