Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments
Wu Y, Peng X, Wang H, Jin Y, Xu D (2023)
IEEE Transactions on Evolutionary Computation 27(3): 686-700.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Wu, Yapei;
Peng, Xingguang;
Wang, Handing;
Jin, YaochuUniBi ;
Xu, Demin
Abstract / Bemerkung
Many real-world optimization tasks suffer from noise. So far, the research on noise-tolerant optimization algorithms is still restricted to low-dimensional problems with less than 100 decision variables. In reality, many problems are high dimensional. Cooperative coevolutionary (CC) algorithms based on a divide-and-conquer strategy are promising in solving complex high-dimensional problems. However, noisy fitness evaluations pose a challenge in problem decomposition for CC. The state-of-the-art grouping methods, such as differential grouping (DG) and recursive DG, are unable to work properly in noisy environments. Because it is impossible to distinguish whether the change of one variable’s difference value is caused by noise or the perturbation of its interacting variables. As a result, every pair of variables will be identified as nonseparable in these methods. In this article, we study how to group decision variables with the covariance matrix adaptation evolution strategy (CMA-ES) in noisy environments and subsequently propose a landscape-aware grouping (LAG) method. Instead of detecting pairwise interacting variables, we directly identify a nonseparable subcomponent. To this end, we propose to use two convergence features: 1) variable convergence time and 2) accumulative path, to describe variables’ fitness landscapes; then, variables are clustered according to these two features. Numerical experiments show that LAG can more effectively identify interactive decision variables in the presence of multiplicative noise than the DG and some of its variants. Up to 500 dimensions, the performance of CC CMA-ES with landscape-aware grouping (CC-CMAES-LAG) is competitive compared with existing CC algorithms and uncertainty-handling CMA-ES (UH-CMA-ES).
Erscheinungsjahr
2023
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Band
27
Ausgabe
3
Seite(n)
686-700
ISSN
1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2979584
Zitieren
Wu Y, Peng X, Wang H, Jin Y, Xu D. Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments. IEEE Transactions on Evolutionary Computation. 2023;27(3):686-700.
Wu, Y., Peng, X., Wang, H., Jin, Y., & Xu, D. (2023). Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments. IEEE Transactions on Evolutionary Computation, 27(3), 686-700. https://doi.org/10.1109/TEVC.2022.3180224
Wu, Yapei, Peng, Xingguang, Wang, Handing, Jin, Yaochu, and Xu, Demin. 2023. “Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments”. IEEE Transactions on Evolutionary Computation 27 (3): 686-700.
Wu, Y., Peng, X., Wang, H., Jin, Y., and Xu, D. (2023). Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments. IEEE Transactions on Evolutionary Computation 27, 686-700.
Wu, Y., et al., 2023. Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments. IEEE Transactions on Evolutionary Computation, 27(3), p 686-700.
Y. Wu, et al., “Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments”, IEEE Transactions on Evolutionary Computation, vol. 27, 2023, pp. 686-700.
Wu, Y., Peng, X., Wang, H., Jin, Y., Xu, D.: Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments. IEEE Transactions on Evolutionary Computation. 27, 686-700 (2023).
Wu, Yapei, Peng, Xingguang, Wang, Handing, Jin, Yaochu, and Xu, Demin. “Cooperative Coevolutionary CMA-ES With Landscape-Aware Grouping in Noisy Environments”. IEEE Transactions on Evolutionary Computation 27.3 (2023): 686-700.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in