Equivariant non-archimedean Arakelov theory of toric varieties

Botero AM (2025)
Journal of Algebraic Geometry (JAG).

Zeitschriftenaufsatz | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We develop an equivariant version of the non-archimedean Arakelov theory of \cite{BGS} in the case of toric varieties. We define the equivariant analogues of the non-archimedean differential forms and currents appearing in \emph{loc.~cit.} and relate them to piecewise polynomial functions on the polyhedral complexes defining the toric models. In particular, we give combinatorial characterizations of the Green currents associated to equivariant cycles and combinatorial descriptions of the arithmetic Chow groups.
Erscheinungsjahr
2025
Zeitschriftentitel
Journal of Algebraic Geometry (JAG)
Page URI
https://pub.uni-bielefeld.de/record/2979497

Zitieren

Botero AM. Equivariant non-archimedean Arakelov theory of toric varieties. Journal of Algebraic Geometry (JAG). 2025.
Botero, A. M. (2025). Equivariant non-archimedean Arakelov theory of toric varieties. Journal of Algebraic Geometry (JAG)
Botero, Ana Maria. 2025. “Equivariant non-archimedean Arakelov theory of toric varieties”. Journal of Algebraic Geometry (JAG).
Botero, A. M. (2025). Equivariant non-archimedean Arakelov theory of toric varieties. Journal of Algebraic Geometry (JAG).
Botero, A.M., 2025. Equivariant non-archimedean Arakelov theory of toric varieties. Journal of Algebraic Geometry (JAG).
A.M. Botero, “Equivariant non-archimedean Arakelov theory of toric varieties”, Journal of Algebraic Geometry (JAG), 2025.
Botero, A.M.: Equivariant non-archimedean Arakelov theory of toric varieties. Journal of Algebraic Geometry (JAG). (2025).
Botero, Ana Maria. “Equivariant non-archimedean Arakelov theory of toric varieties”. Journal of Algebraic Geometry (JAG) (2025).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 2212.03569

Suchen in

Google Scholar