Equivariant non-archimedean Arakelov theory of toric varieties
Botero AM (2022)
arXiv:2212.03569.
Preprint | Englisch
Download

Autor*in
Einrichtung
Abstract / Bemerkung
We develop an equivariant version of the non-archimedean Arakelov theory of
[BGS95] in the case of toric varieties. We define the equivariant analogues of
the non-archimedean differential forms and currents appearing in loc. cit. and
relate them to piecewise polynomial functions on the polyhedral complexes
defining the toric models. In particular, we give combinatorial
characterizations of the Green currents associated to invariant cycles and
combinatorial descriptions of the arithmetic Chow groups.
Erscheinungsjahr
2022
Zeitschriftentitel
arXiv:2212.03569
Page URI
https://pub.uni-bielefeld.de/record/2979497
Zitieren
Botero AM. Equivariant non-archimedean Arakelov theory of toric varieties. arXiv:2212.03569. 2022.
Botero, A. M. (2022). Equivariant non-archimedean Arakelov theory of toric varieties. arXiv:2212.03569
Botero, Ana Maria. 2022. “Equivariant non-archimedean Arakelov theory of toric varieties”. arXiv:2212.03569.
Botero, A. M. (2022). Equivariant non-archimedean Arakelov theory of toric varieties. arXiv:2212.03569.
Botero, A.M., 2022. Equivariant non-archimedean Arakelov theory of toric varieties. arXiv:2212.03569.
A.M. Botero, “Equivariant non-archimedean Arakelov theory of toric varieties”, arXiv:2212.03569, 2022.
Botero, A.M.: Equivariant non-archimedean Arakelov theory of toric varieties. arXiv:2212.03569. (2022).
Botero, Ana Maria. “Equivariant non-archimedean Arakelov theory of toric varieties”. arXiv:2212.03569 (2022).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
botero_equi.pdf
470.94 KB
Access Level

Zuletzt Hochgeladen
2023-05-30T07:56:51Z
MD5 Prüfsumme
68d715457c31a73fbe85f72779bd63c8