DRL-Searcher: A Unified Approach to Multirobot Efficient Search for a Moving Target
Guo H, Peng Q, Cao Z, Jin Y (2023)
IEEE Transactions on Neural Networks and Learning Systems: 1-14.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Guo, Hongliang;
Peng, Qihang;
Cao, Zhiguang;
Jin, YaochuUniBi
Abstract / Bemerkung
This article studies the multirobot efficient search (MuRES) for a nonadversarial moving target problem, whose objective is usually defined as either minimizing the target’s expected capture time or maximizing the target’s capture probability within a given time budget. Different from canonical MuRES algorithms, which target only one specific objective, our proposed algorithm, named distributional reinforcement learning-based searcher (DRL-Searcher), serves as a unified solution to both MuRES objectives. DRL-Searcher employs distributional reinforcement learning (DRL) to evaluate the full distribution of a given search policy’s return, that is, the target’s capture time, and thereafter makes improvements with respect to the particularly specified objective. We further adapt DRL-Searcher to the use case without the target’s real-time location information, where only the probabilistic target belief (PTB) information is provided. Lastly, the recency reward is designed for implicit coordination among multiple robots. Comparative simulation results in a range of MuRES test environments show the superior performance of DRL-Searcher to state of the arts. Additionally, we deploy DRL-Searcher to a real multirobot system for moving target search in a self-constructed indoor environment with satisfying results.
Erscheinungsjahr
2023
Zeitschriftentitel
IEEE Transactions on Neural Networks and Learning Systems
Seite(n)
1-14
ISSN
2162-237X
eISSN
2162-2388
Page URI
https://pub.uni-bielefeld.de/record/2979307
Zitieren
Guo H, Peng Q, Cao Z, Jin Y. DRL-Searcher: A Unified Approach to Multirobot Efficient Search for a Moving Target. IEEE Transactions on Neural Networks and Learning Systems. 2023:1-14.
Guo, H., Peng, Q., Cao, Z., & Jin, Y. (2023). DRL-Searcher: A Unified Approach to Multirobot Efficient Search for a Moving Target. IEEE Transactions on Neural Networks and Learning Systems, 1-14. https://doi.org/10.1109/TNNLS.2023.3274667
Guo, Hongliang, Peng, Qihang, Cao, Zhiguang, and Jin, Yaochu. 2023. “DRL-Searcher: A Unified Approach to Multirobot Efficient Search for a Moving Target”. IEEE Transactions on Neural Networks and Learning Systems, 1-14.
Guo, H., Peng, Q., Cao, Z., and Jin, Y. (2023). DRL-Searcher: A Unified Approach to Multirobot Efficient Search for a Moving Target. IEEE Transactions on Neural Networks and Learning Systems, 1-14.
Guo, H., et al., 2023. DRL-Searcher: A Unified Approach to Multirobot Efficient Search for a Moving Target. IEEE Transactions on Neural Networks and Learning Systems, , p 1-14.
H. Guo, et al., “DRL-Searcher: A Unified Approach to Multirobot Efficient Search for a Moving Target”, IEEE Transactions on Neural Networks and Learning Systems, 2023, pp. 1-14.
Guo, H., Peng, Q., Cao, Z., Jin, Y.: DRL-Searcher: A Unified Approach to Multirobot Efficient Search for a Moving Target. IEEE Transactions on Neural Networks and Learning Systems. 1-14 (2023).
Guo, Hongliang, Peng, Qihang, Cao, Zhiguang, and Jin, Yaochu. “DRL-Searcher: A Unified Approach to Multirobot Efficient Search for a Moving Target”. IEEE Transactions on Neural Networks and Learning Systems (2023): 1-14.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 37216235
PubMed | Europe PMC
Suchen in